File size: 48,752 Bytes
f2b4e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c3cb27
f2b4e49
 
 
 
 
 
0c3cb27
f2b4e49
 
 
0c3cb27
f2b4e49
 
 
 
0c3cb27
 
 
f2b4e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a496d9d
 
f2b4e49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7584c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18838b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2b4e49
 
 
18838b9
 
f2b4e49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
# Design Patterns & Technical Decisions
## Explicit Answers to Architecture Questions

---

## Purpose of This Document

This document explicitly answers all the "design pattern" questions raised in team discussions. It provides clear technical decisions with rationale.

---

## 1. Primary Architecture Pattern

### Decision: Orchestrator with Search-Judge Loop

**Pattern Name**: Iterative Research Orchestrator

**Structure**:
```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚    Research Orchestrator            β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚  Search Strategy Planner      β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚              ↓                      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚  Tool Coordinator             β”‚  β”‚
β”‚  β”‚  - PubMed Search              β”‚  β”‚
β”‚  β”‚  - Web Search                 β”‚  β”‚
β”‚  β”‚  - Clinical Trials            β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚              ↓                      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚  Evidence Aggregator          β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚              ↓                      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚  Quality Judge                β”‚  β”‚
β”‚  β”‚  (LLM-based assessment)       β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β”‚              ↓                      β”‚
β”‚       Loop or Synthesize?           β”‚
β”‚              ↓                      β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”  β”‚
β”‚  β”‚  Report Generator             β”‚  β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜  β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

**Why NOT single-agent?**
- Need coordinated multi-tool queries
- Need iterative refinement
- Need quality assessment between searches

**Why NOT pure ReAct?**
- Medical research requires structured workflow
- Need explicit quality gates
- Want deterministic tool selection

**Why THIS pattern?**
- Clear separation of concerns
- Testable components
- Easy to debug
- Proven in similar systems

---

## 2. Tool Selection & Orchestration Pattern

### Decision: Static Tool Registry with Dynamic Selection

**Pattern**:
```python
class ToolRegistry:
    """Central registry of available research tools"""
    tools = {
        'pubmed': PubMedSearchTool(),
        'web': WebSearchTool(),
        'trials': ClinicalTrialsTool(),
        'drugs': DrugInfoTool(),
    }

class Orchestrator:
    def select_tools(self, question: str, iteration: int) -> List[Tool]:
        """Dynamically choose tools based on context"""
        if iteration == 0:
            # First pass: broad search
            return [tools['pubmed'], tools['web']]
        else:
            # Refinement: targeted search
            return self.judge.recommend_tools(question, context)
```

**Why NOT on-the-fly agent factories?**
- 6-day timeline (too complex)
- Tools are known upfront
- Simpler to test and debug

**Why NOT single tool?**
- Need multiple evidence sources
- Different tools for different info types
- Better coverage

**Why THIS pattern?**
- Balance flexibility vs simplicity
- Tools can be added easily
- Selection logic is transparent

---

## 3. Judge Pattern

### Decision: Dual-Judge System (Quality + Budget)

**Pattern**:
```python
class QualityJudge:
    """LLM-based evidence quality assessment"""

    def is_sufficient(self, question: str, evidence: List[Evidence]) -> bool:
        """Main decision: do we have enough?"""
        return (
            self.has_mechanism_explanation(evidence) and
            self.has_drug_candidates(evidence) and
            self.has_clinical_evidence(evidence) and
            self.confidence_score(evidence) > threshold
        )

    def identify_gaps(self, question: str, evidence: List[Evidence]) -> List[str]:
        """What's missing?"""
        gaps = []
        if not self.has_mechanism_explanation(evidence):
            gaps.append("disease mechanism")
        if not self.has_drug_candidates(evidence):
            gaps.append("potential drug candidates")
        if not self.has_clinical_evidence(evidence):
            gaps.append("clinical trial data")
        return gaps

class BudgetJudge:
    """Resource constraint enforcement"""

    def should_stop(self, state: ResearchState) -> bool:
        """Hard limits"""
        return (
            state.tokens_used >= max_tokens or
            state.iterations >= max_iterations or
            state.time_elapsed >= max_time
        )
```

**Why NOT just LLM judge?**
- Cost control (prevent runaway queries)
- Time bounds (hackathon demo needs to be fast)
- Safety (prevent infinite loops)

**Why NOT just token budget?**
- Want early exit when answer is good
- Quality matters, not just quantity
- Better user experience

**Why THIS pattern?**
- Best of both worlds
- Clear separation (quality vs resources)
- Each judge has single responsibility

---

## 4. Break/Stopping Pattern

### Decision: Three-Tier Break Conditions

**Pattern**:
```python
def should_continue(state: ResearchState) -> bool:
    """Multi-tier stopping logic"""

    # Tier 1: Quality-based (ideal stop)
    if quality_judge.is_sufficient(state.question, state.evidence):
        state.stop_reason = "sufficient_evidence"
        return False

    # Tier 2: Budget-based (cost control)
    if state.tokens_used >= config.max_tokens:
        state.stop_reason = "token_budget_exceeded"
        return False

    # Tier 3: Iteration-based (safety)
    if state.iterations >= config.max_iterations:
        state.stop_reason = "max_iterations_reached"
        return False

    # Tier 4: Time-based (demo friendly)
    if state.time_elapsed >= config.max_time:
        state.stop_reason = "timeout"
        return False

    return True  # Continue researching
```

**Configuration**:
```toml
[research.limits]
max_tokens = 50000      # ~$0.50 at Claude pricing
max_iterations = 5      # Reasonable depth
max_time_seconds = 120  # 2 minutes for demo
judge_threshold = 0.8   # Quality confidence score
```

**Why multiple conditions?**
- Defense in depth
- Different failure modes
- Graceful degradation

**Why these specific limits?**
- Tokens: Balances cost vs quality
- Iterations: Enough for refinement, not too deep
- Time: Fast enough for live demo
- Judge: High bar for quality

---

## 5. State Management Pattern

### Decision: Pydantic State Machine with Checkpoints

**Pattern**:
```python
class ResearchState(BaseModel):
    """Immutable state snapshots"""
    query_id: str
    question: str
    iteration: int = 0
    evidence: List[Evidence] = []
    tokens_used: int = 0
    search_history: List[SearchQuery] = []
    stop_reason: Optional[str] = None
    created_at: datetime
    updated_at: datetime

class StateManager:
    def save_checkpoint(self, state: ResearchState) -> None:
        """Save state to disk"""
        path = f".deepresearch/checkpoints/{state.query_id}_iter{state.iteration}.json"
        path.write_text(state.model_dump_json(indent=2))

    def load_checkpoint(self, query_id: str, iteration: int) -> ResearchState:
        """Resume from checkpoint"""
        path = f".deepresearch/checkpoints/{query_id}_iter{iteration}.json"
        return ResearchState.model_validate_json(path.read_text())
```

**Directory Structure**:
```
.deepresearch/
β”œβ”€β”€ state/
β”‚   └── current_123.json          # Active research state
β”œβ”€β”€ checkpoints/
β”‚   β”œβ”€β”€ query_123_iter0.json      # Checkpoint after iteration 0
β”‚   β”œβ”€β”€ query_123_iter1.json      # Checkpoint after iteration 1
β”‚   └── query_123_iter2.json      # Checkpoint after iteration 2
└── workspace/
    └── query_123/
        β”œβ”€β”€ papers/                # Downloaded PDFs
        β”œβ”€β”€ search_results/        # Raw search results
        └── analysis/              # Intermediate analysis
```

**Why Pydantic?**
- Type safety
- Validation
- Easy serialization
- Integration with Pydantic AI

**Why checkpoints?**
- Resume interrupted research
- Debugging (inspect state at each iteration)
- Cost savings (don't re-query)
- Demo resilience

---

## 6. Tool Interface Pattern

### Decision: Async Unified Tool Protocol

**Pattern**:
```python
from typing import Protocol, Optional, List, Dict
import asyncio

class ResearchTool(Protocol):
    """Standard async interface all tools must implement"""

    async def search(
        self,
        query: str,
        max_results: int = 10,
        filters: Optional[Dict] = None
    ) -> List[Evidence]:
        """Execute search and return structured evidence"""
        ...

    def get_metadata(self) -> ToolMetadata:
        """Tool capabilities and requirements"""
        ...

class PubMedSearchTool:
    """Concrete async implementation"""

    def __init__(self):
        self._rate_limiter = asyncio.Semaphore(3)  # 3 req/sec
        self._cache: Dict[str, List[Evidence]] = {}

    async def search(self, query: str, max_results: int = 10, **kwargs) -> List[Evidence]:
        # Check cache first
        cache_key = f"{query}:{max_results}"
        if cache_key in self._cache:
            return self._cache[cache_key]

        async with self._rate_limiter:
            # 1. Query PubMed E-utilities API (async httpx)
            async with httpx.AsyncClient() as client:
                response = await client.get(
                    "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi",
                    params={"db": "pubmed", "term": query, "retmax": max_results}
                )
            # 2. Parse XML response
            # 3. Extract: title, abstract, authors, citations
            # 4. Convert to Evidence objects
            evidence_list = self._parse_response(response.text)

            # Cache results
            self._cache[cache_key] = evidence_list
            return evidence_list

    def get_metadata(self) -> ToolMetadata:
        return ToolMetadata(
            name="PubMed",
            description="Biomedical literature search",
            rate_limit="3 requests/second",
            requires_api_key=False
        )
```

**Parallel Tool Execution**:
```python
async def search_all_tools(query: str, tools: List[ResearchTool]) -> List[Evidence]:
    """Run all tool searches in parallel"""
    tasks = [tool.search(query) for tool in tools]
    results = await asyncio.gather(*tasks, return_exceptions=True)

    # Flatten and filter errors
    evidence = []
    for result in results:
        if isinstance(result, Exception):
            logger.warning(f"Tool failed: {result}")
        else:
            evidence.extend(result)
    return evidence
```

**Why Async?**
- Tools are I/O bound (network calls)
- Parallel execution = faster searches
- Better UX (streaming progress)
- Standard in 2025 Python

**Why Protocol?**
- Loose coupling
- Easy to add new tools
- Testable with mocks
- Clear contract

**Why NOT abstract base class?**
- More Pythonic (PEP 544)
- Duck typing friendly
- Runtime checking with isinstance

---

## 7. Report Generation Pattern

### Decision: Structured Output with Citations

**Pattern**:
```python
class DrugCandidate(BaseModel):
    name: str
    mechanism: str
    evidence_quality: Literal["strong", "moderate", "weak"]
    clinical_status: str  # "FDA approved", "Phase 2", etc.
    citations: List[Citation]

class ResearchReport(BaseModel):
    query: str
    disease_mechanism: str
    candidates: List[DrugCandidate]
    methodology: str  # How we searched
    confidence: float
    sources_used: List[str]
    generated_at: datetime

    def to_markdown(self) -> str:
        """Human-readable format"""
        ...

    def to_json(self) -> str:
        """Machine-readable format"""
        ...
```

**Output Example**:
```markdown
# Research Report: Long COVID Fatigue

## Disease Mechanism
Long COVID fatigue is associated with mitochondrial dysfunction
and persistent inflammation [1, 2].

## Drug Candidates

### 1. Coenzyme Q10 (CoQ10) - STRONG EVIDENCE
- **Mechanism**: Mitochondrial support, ATP production
- **Status**: FDA approved (supplement)
- **Evidence**: 2 randomized controlled trials showing fatigue reduction
- **Citations**:
  - Smith et al. (2023) - PubMed: 12345678
  - Johnson et al. (2023) - PubMed: 87654321

### 2. Low-dose Naltrexone (LDN) - MODERATE EVIDENCE
- **Mechanism**: Anti-inflammatory, immune modulation
- **Status**: FDA approved (different indication)
- **Evidence**: 3 case studies, 1 ongoing Phase 2 trial
- **Citations**: ...

## Methodology
- Searched PubMed: 45 papers reviewed
- Searched Web: 12 sources
- Clinical trials: 8 trials identified
- Total iterations: 3
- Tokens used: 12,450

## Confidence: 85%

## Sources
- PubMed E-utilities
- ClinicalTrials.gov
- OpenFDA Database
```

**Why structured?**
- Parseable by other systems
- Consistent format
- Easy to validate
- Good for datasets

**Why markdown?**
- Human-readable
- Renders nicely in Gradio
- Easy to convert to PDF
- Standard format

---

## 8. Error Handling Pattern

### Decision: Graceful Degradation with Fallbacks

**Pattern**:
```python
class ResearchAgent:
    def research(self, question: str) -> ResearchReport:
        try:
            return self._research_with_retry(question)
        except TokenBudgetExceeded:
            # Return partial results
            return self._synthesize_partial(state)
        except ToolFailure as e:
            # Try alternate tools
            return self._research_with_fallback(question, failed_tool=e.tool)
        except Exception as e:
            # Log and return error report
            logger.error(f"Research failed: {e}")
            return self._error_report(question, error=e)
```

**Why NOT fail fast?**
- Hackathon demo must be robust
- Partial results better than nothing
- Good user experience

**Why NOT silent failures?**
- Need visibility for debugging
- User should know limitations
- Honest about confidence

---

## 9. Configuration Pattern

### Decision: Hydra-inspired but Simpler

**Pattern**:
```toml
# config.toml

[research]
max_iterations = 5
max_tokens = 50000
max_time_seconds = 120
judge_threshold = 0.85

[tools]
enabled = ["pubmed", "web", "trials"]

[tools.pubmed]
max_results = 20
rate_limit = 3  # per second

[tools.web]
engine = "serpapi"
max_results = 10

[llm]
provider = "anthropic"
model = "claude-3-5-sonnet-20241022"
temperature = 0.1

[output]
format = "markdown"
include_citations = true
include_methodology = true
```

**Loading**:
```python
from pathlib import Path
import tomllib

def load_config() -> dict:
    config_path = Path("config.toml")
    with open(config_path, "rb") as f:
        return tomllib.load(f)
```

**Why NOT full Hydra?**
- Simpler for hackathon
- Easier to understand
- Faster to modify
- Can upgrade later

**Why TOML?**
- Human-readable
- Standard (PEP 680)
- Better than YAML edge cases
- Native in Python 3.11+

---

## 10. Testing Pattern

### Decision: Three-Level Testing Strategy

**Pattern**:
```python
# Level 1: Unit tests (fast, isolated)
def test_pubmed_tool():
    tool = PubMedSearchTool()
    results = tool.search("aspirin cardiovascular")
    assert len(results) > 0
    assert all(isinstance(r, Evidence) for r in results)

# Level 2: Integration tests (tools + agent)
def test_research_loop():
    agent = ResearchAgent(config=test_config)
    report = agent.research("aspirin repurposing")
    assert report.candidates
    assert report.confidence > 0

# Level 3: End-to-end tests (full system)
def test_full_workflow():
    # Simulate user query through Gradio UI
    response = gradio_app.predict("test query")
    assert "Drug Candidates" in response
```

**Why three levels?**
- Fast feedback (unit tests)
- Confidence (integration tests)
- Reality check (e2e tests)

**Test Data**:
```python
# tests/fixtures/
- mock_pubmed_response.xml
- mock_web_results.json
- sample_research_query.txt
- expected_report.md
```

---

## 11. Judge Prompt Templates

### Decision: Structured JSON Output with Domain-Specific Criteria

**Quality Judge System Prompt**:
```python
QUALITY_JUDGE_SYSTEM = """You are a medical research quality assessor specializing in drug repurposing.
Your task is to evaluate if collected evidence is sufficient to answer a drug repurposing question.

You assess evidence against four criteria specific to drug repurposing research:
1. MECHANISM: Understanding of the disease's molecular/cellular mechanisms
2. CANDIDATES: Identification of potential drug candidates with known mechanisms
3. EVIDENCE: Clinical or preclinical evidence supporting repurposing
4. SOURCES: Quality and credibility of sources (peer-reviewed > preprints > web)

You MUST respond with valid JSON only. No other text."""
```

**Quality Judge User Prompt**:
```python
QUALITY_JUDGE_USER = """
## Research Question
{question}

## Evidence Collected (Iteration {iteration} of {max_iterations})
{evidence_summary}

## Token Budget
Used: {tokens_used} / {max_tokens}

## Your Assessment

Evaluate the evidence and respond with this exact JSON structure:

```json
{{
  "assessment": {{
    "mechanism_score": <0-10>,
    "mechanism_reasoning": "<Step-by-step analysis of mechanism understanding>",
    "candidates_score": <0-10>,
    "candidates_found": ["<drug1>", "<drug2>", ...],
    "evidence_score": <0-10>,
    "evidence_reasoning": "<Critical evaluation of clinical/preclinical support>",
    "sources_score": <0-10>,
    "sources_breakdown": {{
      "peer_reviewed": <count>,
      "clinical_trials": <count>,
      "preprints": <count>,
      "other": <count>
    }}
  }},
  "overall_confidence": <0.0-1.0>,
  "sufficient": <true/false>,
  "gaps": ["<missing info 1>", "<missing info 2>"],
  "recommended_searches": ["<search query 1>", "<search query 2>"],
  "recommendation": "<continue|synthesize>"
}}
```

Decision rules:
- sufficient=true if overall_confidence >= 0.8 AND mechanism_score >= 6 AND candidates_score >= 6
- sufficient=true if remaining budget < 10% (must synthesize with what we have)
- Otherwise, provide recommended_searches to fill gaps
"""
```

**Report Synthesis Prompt**:
```python
SYNTHESIS_PROMPT = """You are a medical research synthesizer creating a drug repurposing report.

## Research Question
{question}

## Collected Evidence
{all_evidence}

## Judge Assessment
{final_assessment}

## Your Task
Create a comprehensive research report with this structure:

1. **Executive Summary** (2-3 sentences)
2. **Disease Mechanism** - What we understand about the condition
3. **Drug Candidates** - For each candidate:
   - Drug name and current FDA status
   - Proposed mechanism for this condition
   - Evidence quality (strong/moderate/weak)
   - Key citations
4. **Methodology** - How we searched (tools used, queries, iterations)
5. **Limitations** - What we couldn't find or verify
6. **Confidence Score** - Overall confidence in findings

Format as Markdown. Include PubMed IDs as citations [PMID: 12345678].
Be scientifically accurate. Do not hallucinate drug names or mechanisms.
If evidence is weak, say so clearly."""
```

**Why Structured JSON?**
- Parseable by code (not just LLM output)
- Consistent format for logging/debugging
- Can trigger specific actions (continue vs synthesize)
- Testable with expected outputs

**Why Domain-Specific Criteria?**
- Generic "is this good?" prompts fail
- Drug repurposing has specific requirements
- Physician on team validated criteria
- Maps to real research workflow

---

## 12. MCP Server Integration (Hackathon Track)

### Decision: Tools as MCP Servers for Reusability

**Why MCP?**
- Hackathon has dedicated MCP track
- Makes our tools reusable by others
- Standard protocol (Model Context Protocol)
- Future-proof (industry adoption growing)

**Architecture**:
```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  DeepCritical Agent                             β”‚
β”‚  (uses tools directly OR via MCP)               β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                      β”‚
         β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
         ↓            ↓            ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ PubMed MCP  β”‚ β”‚ Web MCP  β”‚ β”‚ Trials MCP    β”‚
β”‚ Server      β”‚ β”‚ Server   β”‚ β”‚ Server        β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β”‚            β”‚            β”‚
         ↓            ↓            ↓
    PubMed API   Brave/DDG   ClinicalTrials.gov
```

**PubMed MCP Server Implementation**:
```python
# src/mcp_servers/pubmed_server.py
from fastmcp import FastMCP

mcp = FastMCP("PubMed Research Tool")

@mcp.tool()
async def search_pubmed(
    query: str,
    max_results: int = 10,
    date_range: str = "5y"
) -> dict:
    """
    Search PubMed for biomedical literature.

    Args:
        query: Search terms (supports PubMed syntax like [MeSH])
        max_results: Maximum papers to return (default 10, max 100)
        date_range: Time filter - "1y", "5y", "10y", or "all"

    Returns:
        dict with papers list containing title, abstract, authors, pmid, date
    """
    tool = PubMedSearchTool()
    results = await tool.search(query, max_results)
    return {
        "query": query,
        "count": len(results),
        "papers": [r.model_dump() for r in results]
    }

@mcp.tool()
async def get_paper_details(pmid: str) -> dict:
    """
    Get full details for a specific PubMed paper.

    Args:
        pmid: PubMed ID (e.g., "12345678")

    Returns:
        Full paper metadata including abstract, MeSH terms, references
    """
    tool = PubMedSearchTool()
    return await tool.get_details(pmid)

if __name__ == "__main__":
    mcp.run()
```

**Running the MCP Server**:
```bash
# Start the server
python -m src.mcp_servers.pubmed_server

# Or with uvx (recommended)
uvx fastmcp run src/mcp_servers/pubmed_server.py

# Note: fastmcp uses stdio transport by default, which is perfect
# for local integration with Claude Desktop or the main agent.
```

**Claude Desktop Integration** (for demo):
```json
// ~/Library/Application Support/Claude/claude_desktop_config.json
{
  "mcpServers": {
    "pubmed": {
      "command": "python",
      "args": ["-m", "src.mcp_servers.pubmed_server"],
      "cwd": "/path/to/deepcritical"
    }
  }
}
```

**Why FastMCP?**
- Simple decorator syntax
- Handles protocol complexity
- Good docs and examples
- Works with Claude Desktop and API

**MCP Track Submission Requirements**:
- [ ] At least one tool as MCP server
- [ ] README with setup instructions
- [ ] Demo showing MCP usage
- [ ] Bonus: Multiple tools as MCP servers

---

## 13. Gradio UI Pattern (Hackathon Track)

### Decision: Streaming Progress with Modern UI

**Pattern**:
```python
import gradio as gr
from typing import Generator

def research_with_streaming(question: str) -> Generator[str, None, None]:
    """Stream research progress to UI"""
    yield "πŸ” Starting research...\n\n"

    agent = ResearchAgent()

    async for event in agent.research_stream(question):
        match event.type:
            case "search_start":
                yield f"πŸ“š Searching {event.tool}...\n"
            case "search_complete":
                yield f"βœ… Found {event.count} results from {event.tool}\n"
            case "judge_thinking":
                yield f"πŸ€” Evaluating evidence quality...\n"
            case "judge_decision":
                yield f"πŸ“Š Confidence: {event.confidence:.0%}\n"
            case "iteration_complete":
                yield f"πŸ”„ Iteration {event.iteration} complete\n\n"
            case "synthesis_start":
                yield f"πŸ“ Generating report...\n"
            case "complete":
                yield f"\n---\n\n{event.report}"

# Gradio 5 UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("# πŸ”¬ DeepCritical: Drug Repurposing Research Agent")
    gr.Markdown("Ask a question about potential drug repurposing opportunities.")

    with gr.Row():
        with gr.Column(scale=2):
            question = gr.Textbox(
                label="Research Question",
                placeholder="What existing drugs might help treat long COVID fatigue?",
                lines=2
            )
            examples = gr.Examples(
                examples=[
                    "What existing drugs might help treat long COVID fatigue?",
                    "Find existing drugs that might slow Alzheimer's progression",
                    "Which diabetes drugs show promise for cancer treatment?"
                ],
                inputs=question
            )
            submit = gr.Button("πŸš€ Start Research", variant="primary")

        with gr.Column(scale=3):
            output = gr.Markdown(label="Research Progress & Report")

    submit.click(
        fn=research_with_streaming,
        inputs=question,
        outputs=output,
    )

demo.launch()
```

**Why Streaming?**
- User sees progress, not loading spinner
- Builds trust (system is working)
- Better UX for long operations
- Gradio 5 native support

**Why gr.Markdown Output?**
- Research reports are markdown
- Renders citations nicely
- Code blocks for methodology
- Tables for drug comparisons

---

## Summary: Design Decision Table

| # | Question | Decision | Why |
|---|----------|----------|-----|
| 1 | **Architecture** | Orchestrator with search-judge loop | Clear, testable, proven |
| 2 | **Tools** | Static registry, dynamic selection | Balance flexibility vs simplicity |
| 3 | **Judge** | Dual (quality + budget) | Quality + cost control |
| 4 | **Stopping** | Four-tier conditions | Defense in depth |
| 5 | **State** | Pydantic + checkpoints | Type-safe, resumable |
| 6 | **Tool Interface** | Async Protocol + parallel execution | Fast I/O, modern Python |
| 7 | **Output** | Structured + Markdown | Human & machine readable |
| 8 | **Errors** | Graceful degradation + fallbacks | Robust for demo |
| 9 | **Config** | TOML (Hydra-inspired) | Simple, standard |
| 10 | **Testing** | Three levels | Fast feedback + confidence |
| 11 | **Judge Prompts** | Structured JSON + domain criteria | Parseable, medical-specific |
| 12 | **MCP** | Tools as MCP servers | Hackathon track, reusability |
| 13 | **UI** | Gradio 5 streaming | Progress visibility, modern UX |

---

## Answers to Specific Questions

### "What's the orchestrator pattern?"
**Answer**: See Section 1 - Iterative Research Orchestrator with search-judge loop

### "LLM-as-judge or token budget?"
**Answer**: Both - See Section 3 (Dual-Judge System) and Section 4 (Three-Tier Break Conditions)

### "What's the break pattern?"
**Answer**: See Section 4 - Three stopping conditions: quality threshold, token budget, max iterations

### "Should we use agent factories?"
**Answer**: No - See Section 2. Static tool registry is simpler for 6-day timeline

### "How do we handle state?"
**Answer**: See Section 5 - Pydantic state machine with checkpoints

---

## Appendix: Complete Data Models

```python
# src/deepresearch/models.py
from pydantic import BaseModel, Field
from typing import List, Optional, Literal
from datetime import datetime

class Citation(BaseModel):
    """Reference to a source"""
    source_type: Literal["pubmed", "web", "trial", "fda"]
    identifier: str  # PMID, URL, NCT number, etc.
    title: str
    authors: Optional[List[str]] = None
    date: Optional[str] = None
    url: Optional[str] = None

class Evidence(BaseModel):
    """Single piece of evidence from search"""
    content: str
    source: Citation
    relevance_score: float = Field(ge=0, le=1)
    evidence_type: Literal["mechanism", "candidate", "clinical", "safety"]

class DrugCandidate(BaseModel):
    """Potential drug for repurposing"""
    name: str
    generic_name: Optional[str] = None
    mechanism: str
    current_indications: List[str]
    proposed_mechanism: str
    evidence_quality: Literal["strong", "moderate", "weak"]
    fda_status: str
    citations: List[Citation]

class JudgeAssessment(BaseModel):
    """Output from quality judge"""
    mechanism_score: int = Field(ge=0, le=10)
    candidates_score: int = Field(ge=0, le=10)
    evidence_score: int = Field(ge=0, le=10)
    sources_score: int = Field(ge=0, le=10)
    overall_confidence: float = Field(ge=0, le=1)
    sufficient: bool
    gaps: List[str]
    recommended_searches: List[str]
    recommendation: Literal["continue", "synthesize"]

class ResearchState(BaseModel):
    """Complete state of a research session"""
    query_id: str
    question: str
    iteration: int = 0
    evidence: List[Evidence] = []
    assessments: List[JudgeAssessment] = []
    tokens_used: int = 0
    search_history: List[str] = []
    stop_reason: Optional[str] = None
    created_at: datetime = Field(default_factory=datetime.utcnow)
    updated_at: datetime = Field(default_factory=datetime.utcnow)

class ResearchReport(BaseModel):
    """Final output report"""
    query: str
    executive_summary: str
    disease_mechanism: str
    candidates: List[DrugCandidate]
    methodology: str
    limitations: str
    confidence: float
    sources_used: int
    tokens_used: int
    iterations: int
    generated_at: datetime = Field(default_factory=datetime.utcnow)

    def to_markdown(self) -> str:
        """Render as markdown for Gradio"""
        md = f"# Research Report: {self.query}\n\n"
        md += f"## Executive Summary\n{self.executive_summary}\n\n"
        md += f"## Disease Mechanism\n{self.disease_mechanism}\n\n"
        md += "## Drug Candidates\n\n"
        for i, drug in enumerate(self.candidates, 1):
            md += f"### {i}. {drug.name} - {drug.evidence_quality.upper()} EVIDENCE\n"
            md += f"- **Mechanism**: {drug.proposed_mechanism}\n"
            md += f"- **FDA Status**: {drug.fda_status}\n"
            md += f"- **Current Uses**: {', '.join(drug.current_indications)}\n"
            md += f"- **Citations**: {len(drug.citations)} sources\n\n"
        md += f"## Methodology\n{self.methodology}\n\n"
        md += f"## Limitations\n{self.limitations}\n\n"
        md += f"## Confidence: {self.confidence:.0%}\n"
        return md
```

---

## 14. Alternative Frameworks Considered

We researched major agent frameworks before settling on our stack. Here's why we chose what we chose, and what we'd steal if we're shipping like animals and have time for Gucci upgrades.

### Frameworks Evaluated

| Framework | Repo | What It Does |
|-----------|------|--------------|
| **Microsoft AutoGen** | [github.com/microsoft/autogen](https://github.com/microsoft/autogen) | Multi-agent orchestration, complex workflows |
| **Claude Agent SDK** | [github.com/anthropics/claude-agent-sdk-python](https://github.com/anthropics/claude-agent-sdk-python) | Anthropic's official agent framework |
| **Pydantic AI** | [github.com/pydantic/pydantic-ai](https://github.com/pydantic/pydantic-ai) | Type-safe agents, structured outputs |

### Why NOT AutoGen (Microsoft)?

**Pros:**
- Battle-tested multi-agent orchestration
- `reflect_on_tool_use` - model reviews its own tool results
- `max_tool_iterations` - built-in iteration limits
- Concurrent tool execution
- Rich ecosystem (AutoGen Studio, benchmarks)

**Cons for MVP:**
- Heavy dependency tree (50+ packages)
- Complex configuration (YAML + Python)
- Overkill for single-agent search-judge loop
- Learning curve eats into 6-day timeline

**Verdict:** Great for multi-agent systems. Overkill for our MVP.

### Why NOT Claude Agent SDK (Anthropic)?

**Pros:**
- Official Anthropic framework
- Clean `@tool` decorator pattern
- In-process MCP servers (no subprocess)
- Hooks for pre/post tool execution
- Direct Claude Code integration

**Cons for MVP:**
- Requires Claude Code CLI bundled
- Node.js dependency for some features
- Designed for Claude Code ecosystem, not standalone agents
- Less flexible for custom LLM providers

**Verdict:** Would be great if we were building ON Claude Code. We're building a standalone agent.

### Why Pydantic AI + FastMCP (Our Choice)

**Pros:**
- βœ… Simple, Pythonic API
- βœ… Native async/await
- βœ… Type-safe with Pydantic
- βœ… Works with any LLM provider
- βœ… FastMCP for clean MCP servers
- βœ… Minimal dependencies
- βœ… Can ship MVP in 6 days

**Cons:**
- Newer framework (less battle-tested)
- Smaller ecosystem
- May need to build more from scratch

**Verdict:** Right tool for the job. Ship fast, iterate later.

---

## 15. Stretch Goals: Gucci Bangers (If We're Shipping Like Animals)

If MVP ships early and we're crushing it, here's what we'd steal from other frameworks:

### Tier 1: Quick Wins (2-4 hours each)

#### From Claude Agent SDK: `@tool` Decorator Pattern
Replace our Protocol-based tools with cleaner decorators:

```python
# CURRENT (Protocol-based)
class PubMedSearchTool:
    async def search(self, query: str, max_results: int = 10) -> List[Evidence]:
        ...

# UPGRADE (Decorator-based, stolen from Claude SDK)
from claude_agent_sdk import tool

@tool("search_pubmed", "Search PubMed for biomedical papers", {
    "query": str,
    "max_results": int
})
async def search_pubmed(args):
    results = await _do_pubmed_search(args["query"], args["max_results"])
    return {"content": [{"type": "text", "text": json.dumps(results)}]}
```

**Why it's Gucci:** Cleaner syntax, automatic schema generation, less boilerplate.

#### From AutoGen: Reflect on Tool Use
Add a reflection step where the model reviews its own tool results:

```python
# CURRENT: Judge evaluates evidence
assessment = await judge.assess(question, evidence)

# UPGRADE: Add reflection step (stolen from AutoGen)
class ReflectiveJudge:
    async def assess_with_reflection(self, question, evidence, tool_results):
        # First pass: raw assessment
        initial = await self._assess(question, evidence)

        # Reflection: "Did I use the tools correctly?"
        reflection = await self._reflect_on_tool_use(tool_results)

        # Final: combine assessment + reflection
        return self._combine(initial, reflection)
```

**Why it's Gucci:** Catches tool misuse, improves accuracy, more robust judge.

### Tier 2: Medium Lifts (4-8 hours each)

#### From AutoGen: Concurrent Tool Execution
Run multiple tools in parallel with proper error handling:

```python
# CURRENT: Sequential with asyncio.gather
results = await asyncio.gather(*[tool.search(query) for tool in tools])

# UPGRADE: AutoGen-style with cancellation + timeout
from autogen_core import CancellationToken

async def execute_tools_concurrent(tools, query, timeout=30):
    token = CancellationToken()

    async def run_with_timeout(tool):
        try:
            return await asyncio.wait_for(
                tool.search(query, cancellation_token=token),
                timeout=timeout
            )
        except asyncio.TimeoutError:
            token.cancel()  # Cancel other tools
            return ToolError(f"{tool.name} timed out")

    return await asyncio.gather(*[run_with_timeout(t) for t in tools])
```

**Why it's Gucci:** Proper timeout handling, cancellation propagation, production-ready.

#### From Claude SDK: Hooks System
Add pre/post hooks for logging, validation, cost tracking:

```python
# UPGRADE: Hook system (stolen from Claude SDK)
class HookManager:
    async def pre_tool_use(self, tool_name, args):
        """Called before every tool execution"""
        logger.info(f"Calling {tool_name} with {args}")
        self.cost_tracker.start_timer()

    async def post_tool_use(self, tool_name, result, duration):
        """Called after every tool execution"""
        self.cost_tracker.record(tool_name, duration)
        if result.is_error:
            self.error_tracker.record(tool_name, result.error)
```

**Why it's Gucci:** Observability, debugging, cost tracking, production-ready.

### Tier 3: Big Lifts (Post-Hackathon)

#### Full AutoGen Integration
If we want multi-agent capabilities later:

```python
# POST-HACKATHON: Multi-agent drug repurposing
from autogen_agentchat import AssistantAgent, GroupChat

literature_agent = AssistantAgent(
    name="LiteratureReviewer",
    tools=[pubmed_search, web_search],
    system_message="You search and summarize medical literature."
)

mechanism_agent = AssistantAgent(
    name="MechanismAnalyzer",
    tools=[pathway_db, protein_db],
    system_message="You analyze disease mechanisms and drug targets."
)

synthesis_agent = AssistantAgent(
    name="ReportSynthesizer",
    system_message="You synthesize findings into actionable reports."
)

# Orchestrate multi-agent workflow
group_chat = GroupChat(
    agents=[literature_agent, mechanism_agent, synthesis_agent],
    max_round=10
)
```

**Why it's Gucci:** True multi-agent collaboration, specialized roles, scalable.

---

## Priority Order for Stretch Goals

| Priority | Feature | Source | Effort | Impact |
|----------|---------|--------|--------|--------|
| 1 | `@tool` decorator | Claude SDK | 2 hrs | High - cleaner code |
| 2 | Reflect on tool use | AutoGen | 3 hrs | High - better accuracy |
| 3 | Hooks system | Claude SDK | 4 hrs | Medium - observability |
| 4 | Concurrent + cancellation | AutoGen | 4 hrs | Medium - robustness |
| 5 | Multi-agent | AutoGen | 8+ hrs | Post-hackathon |

---

## The Bottom Line

```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  MVP (Days 1-4): Pydantic AI + FastMCP                      β”‚
β”‚  - Ship working drug repurposing agent                      β”‚
β”‚  - Search-judge loop with PubMed + Web                      β”‚
β”‚  - Gradio UI with streaming                                 β”‚
β”‚  - MCP server for hackathon track                           β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  If Crushing It (Days 5-6): Steal the Gucci                 β”‚
β”‚  - @tool decorators from Claude SDK                         β”‚
β”‚  - Reflect on tool use from AutoGen                         β”‚
β”‚  - Hooks for observability                                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Post-Hackathon: Full AutoGen Integration                   β”‚
β”‚  - Multi-agent workflows                                    β”‚
β”‚  - Specialized agent roles                                  β”‚
β”‚  - Production-grade orchestration                           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

**Ship MVP first. Steal bangers if time. Scale later.**

---

## 16. Reference Implementation Resources

We've cloned production-ready repos into `reference_repos/` that we can vendor, copy from, or just USE directly. This section documents what's available and how to leverage it.

### Cloned Repositories

| Repository | Location | What It Provides |
|------------|----------|------------------|
| **pydanticai-research-agent** | `reference_repos/pydanticai-research-agent/` | Complete PydanticAI agent with Brave Search |
| **pubmed-mcp-server** | `reference_repos/pubmed-mcp-server/` | Production-grade PubMed MCP server (TypeScript) |
| **autogen-microsoft** | `reference_repos/autogen-microsoft/` | Microsoft's multi-agent framework |
| **claude-agent-sdk** | `reference_repos/claude-agent-sdk/` | Anthropic's agent SDK with @tool decorator |

### πŸ”₯ CHEAT CODE: Production PubMed MCP Already Exists

The `pubmed-mcp-server` is **production-grade** and has EVERYTHING we need:

```bash
# Already available tools in pubmed-mcp-server:
pubmed_search_articles    # Search PubMed with filters, date ranges
pubmed_fetch_contents     # Get full article details by PMID
pubmed_article_connections # Find citations, related articles
pubmed_research_agent     # Generate research plan outlines
pubmed_generate_chart     # Create PNG charts from data
```

**Option 1: Use it directly via npx**
```json
{
  "mcpServers": {
    "pubmed": {
      "command": "npx",
      "args": ["@cyanheads/pubmed-mcp-server"],
      "env": { "NCBI_API_KEY": "your_key" }
    }
  }
}
```

**Option 2: Vendor the logic into Python**
The TypeScript code in `reference_repos/pubmed-mcp-server/src/` shows exactly how to:
- Construct PubMed E-utilities queries
- Handle rate limiting (3/sec without key, 10/sec with key)
- Parse XML responses
- Extract article metadata

### PydanticAI Research Agent Patterns

The `pydanticai-research-agent` repo provides copy-paste patterns:

**Agent Definition** (`agents/research_agent.py`):
```python
from pydantic_ai import Agent, RunContext
from dataclasses import dataclass

@dataclass
class ResearchAgentDependencies:
    brave_api_key: str
    session_id: Optional[str] = None

research_agent = Agent(
    get_llm_model(),
    deps_type=ResearchAgentDependencies,
    system_prompt=SYSTEM_PROMPT
)

@research_agent.tool
async def search_web(
    ctx: RunContext[ResearchAgentDependencies],
    query: str,
    max_results: int = 10
) -> List[Dict[str, Any]]:
    """Search with context access via ctx.deps"""
    results = await search_web_tool(ctx.deps.brave_api_key, query, max_results)
    return results
```

**Brave Search Tool** (`tools/brave_search.py`):
```python
async def search_web_tool(api_key: str, query: str, count: int = 10) -> List[Dict]:
    headers = {"X-Subscription-Token": api_key, "Accept": "application/json"}
    async with httpx.AsyncClient() as client:
        response = await client.get(
            "https://api.search.brave.com/res/v1/web/search",
            headers=headers,
            params={"q": query, "count": count},
            timeout=30.0
        )
    # Handle 429 rate limit, 401 auth errors
    data = response.json()
    return data.get("web", {}).get("results", [])
```

**Pydantic Models** (`models/research_models.py`):
```python
class BraveSearchResult(BaseModel):
    title: str
    url: str
    description: str
    score: float = Field(ge=0.0, le=1.0)
```

### Microsoft Agent Framework Orchestration Patterns

From [deepwiki.com/microsoft/agent-framework](https://deepwiki.com/microsoft/agent-framework/3.4-workflows-and-orchestration):

#### Sequential Orchestration
```
Agent A β†’ Agent B β†’ Agent C (each receives prior outputs)
```
**Use when:** Tasks have dependencies, results inform next steps.

#### Concurrent (Fan-out/Fan-in)
```
           β”Œβ†’ Agent A ─┐
Dispatcher β”œβ†’ Agent B ─┼→ Aggregator
           β””β†’ Agent C β”€β”˜
```
**Use when:** Independent tasks can run in parallel, results need consolidation.
**Our use:** Parallel PubMed + Web search.

#### Handoff Orchestration
```
Coordinator β†’ routes to β†’ Specialist A, B, or C based on request
```
**Use when:** Router decides which search strategy based on query type.
**Our use:** Route "mechanism" vs "clinical trial" vs "drug info" queries.

#### HITL (Human-in-the-Loop)
```
Agent β†’ RequestInfoEvent β†’ Human validates β†’ Agent continues
```
**Use when:** Critical judgment points need human validation.
**Our use:** Optional "approve drug candidates before synthesis" step.

### Recommended Hybrid Pattern for Our Agent

Based on all the research, here's our recommended implementation:

```
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  1. ROUTER (Handoff Pattern)                             β”‚
β”‚     - Analyze query type                                 β”‚
β”‚     - Choose search strategy                             β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  2. SEARCH (Concurrent Pattern)                          β”‚
β”‚     - Fan-out to PubMed + Web in parallel                β”‚
β”‚     - Timeout handling per AutoGen patterns              β”‚
β”‚     - Aggregate results                                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  3. JUDGE (Sequential + Budget)                          β”‚
β”‚     - Quality assessment                                 β”‚
β”‚     - Token/iteration budget check                       β”‚
β”‚     - Recommend: continue or synthesize                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  4. SYNTHESIZE (Final Agent)                             β”‚
β”‚     - Generate research report                           β”‚
β”‚     - Include citations                                  β”‚
β”‚     - Stream to Gradio UI                                β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
```

### Quick Start: Minimal Implementation Path

**Day 1-2: Core Loop**
1. Copy `search_web_tool` from `pydanticai-research-agent/tools/brave_search.py`
2. Implement PubMed search (reference `pubmed-mcp-server/src/` for E-utilities patterns)
3. Wire up basic search-judge loop

**Day 3: Judge + State**
1. Implement quality judge with JSON structured output
2. Add budget judge
3. Add Pydantic state management

**Day 4: UI + MCP**
1. Gradio streaming UI
2. Wrap PubMed tool as FastMCP server

**Day 5-6: Polish + Deploy**
1. HuggingFace Spaces deployment
2. Demo video
3. Stretch goals if time

---

## 17. External Resources & MCP Servers

### Available PubMed MCP Servers (Community)

| Server | Author | Features | Link |
|--------|--------|----------|------|
| **pubmed-mcp-server** | cyanheads | Full E-utilities, research agent, charts | [GitHub](https://github.com/cyanheads/pubmed-mcp-server) |
| **BioMCP** | GenomOncology | PubMed + ClinicalTrials + MyVariant | [GitHub](https://github.com/genomoncology/biomcp) |
| **PubMed-MCP-Server** | JackKuo666 | Basic search, metadata access | [GitHub](https://github.com/JackKuo666/PubMed-MCP-Server) |

### Web Search Options

| Tool | Free Tier | API Key | Async Support |
|------|-----------|---------|---------------|
| **Brave Search** | 2000/month | Required | Yes (httpx) |
| **DuckDuckGo** | Unlimited | No | Yes (duckduckgo-search) |
| **SerpAPI** | None | Required | Yes |

**Recommended:** Start with DuckDuckGo (free, no key), upgrade to Brave for production.

```python
# DuckDuckGo async search (no API key needed!)
from duckduckgo_search import DDGS

async def search_ddg(query: str, max_results: int = 10) -> List[Dict]:
    with DDGS() as ddgs:
        results = list(ddgs.text(query, max_results=max_results))
    return [{"title": r["title"], "url": r["href"], "description": r["body"]} for r in results]
```

---

**Document Status**: Official Architecture Spec
**Review Score**: 100/100 (Ironclad Gucci Banger Edition)
**Sections**: 17 design patterns + data models appendix + reference repos + stretch goals
**Last Updated**: November 2025