Spaces:
Running
Running
File size: 48,752 Bytes
f2b4e49 0c3cb27 f2b4e49 0c3cb27 f2b4e49 0c3cb27 f2b4e49 0c3cb27 f2b4e49 a496d9d f2b4e49 c7584c1 18838b9 f2b4e49 18838b9 f2b4e49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 |
# Design Patterns & Technical Decisions
## Explicit Answers to Architecture Questions
---
## Purpose of This Document
This document explicitly answers all the "design pattern" questions raised in team discussions. It provides clear technical decisions with rationale.
---
## 1. Primary Architecture Pattern
### Decision: Orchestrator with Search-Judge Loop
**Pattern Name**: Iterative Research Orchestrator
**Structure**:
```
βββββββββββββββββββββββββββββββββββββββ
β Research Orchestrator β
β βββββββββββββββββββββββββββββββββ β
β β Search Strategy Planner β β
β βββββββββββββββββββββββββββββββββ β
β β β
β βββββββββββββββββββββββββββββββββ β
β β Tool Coordinator β β
β β - PubMed Search β β
β β - Web Search β β
β β - Clinical Trials β β
β βββββββββββββββββββββββββββββββββ β
β β β
β βββββββββββββββββββββββββββββββββ β
β β Evidence Aggregator β β
β βββββββββββββββββββββββββββββββββ β
β β β
β βββββββββββββββββββββββββββββββββ β
β β Quality Judge β β
β β (LLM-based assessment) β β
β βββββββββββββββββββββββββββββββββ β
β β β
β Loop or Synthesize? β
β β β
β βββββββββββββββββββββββββββββββββ β
β β Report Generator β β
β βββββββββββββββββββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββ
```
**Why NOT single-agent?**
- Need coordinated multi-tool queries
- Need iterative refinement
- Need quality assessment between searches
**Why NOT pure ReAct?**
- Medical research requires structured workflow
- Need explicit quality gates
- Want deterministic tool selection
**Why THIS pattern?**
- Clear separation of concerns
- Testable components
- Easy to debug
- Proven in similar systems
---
## 2. Tool Selection & Orchestration Pattern
### Decision: Static Tool Registry with Dynamic Selection
**Pattern**:
```python
class ToolRegistry:
"""Central registry of available research tools"""
tools = {
'pubmed': PubMedSearchTool(),
'web': WebSearchTool(),
'trials': ClinicalTrialsTool(),
'drugs': DrugInfoTool(),
}
class Orchestrator:
def select_tools(self, question: str, iteration: int) -> List[Tool]:
"""Dynamically choose tools based on context"""
if iteration == 0:
# First pass: broad search
return [tools['pubmed'], tools['web']]
else:
# Refinement: targeted search
return self.judge.recommend_tools(question, context)
```
**Why NOT on-the-fly agent factories?**
- 6-day timeline (too complex)
- Tools are known upfront
- Simpler to test and debug
**Why NOT single tool?**
- Need multiple evidence sources
- Different tools for different info types
- Better coverage
**Why THIS pattern?**
- Balance flexibility vs simplicity
- Tools can be added easily
- Selection logic is transparent
---
## 3. Judge Pattern
### Decision: Dual-Judge System (Quality + Budget)
**Pattern**:
```python
class QualityJudge:
"""LLM-based evidence quality assessment"""
def is_sufficient(self, question: str, evidence: List[Evidence]) -> bool:
"""Main decision: do we have enough?"""
return (
self.has_mechanism_explanation(evidence) and
self.has_drug_candidates(evidence) and
self.has_clinical_evidence(evidence) and
self.confidence_score(evidence) > threshold
)
def identify_gaps(self, question: str, evidence: List[Evidence]) -> List[str]:
"""What's missing?"""
gaps = []
if not self.has_mechanism_explanation(evidence):
gaps.append("disease mechanism")
if not self.has_drug_candidates(evidence):
gaps.append("potential drug candidates")
if not self.has_clinical_evidence(evidence):
gaps.append("clinical trial data")
return gaps
class BudgetJudge:
"""Resource constraint enforcement"""
def should_stop(self, state: ResearchState) -> bool:
"""Hard limits"""
return (
state.tokens_used >= max_tokens or
state.iterations >= max_iterations or
state.time_elapsed >= max_time
)
```
**Why NOT just LLM judge?**
- Cost control (prevent runaway queries)
- Time bounds (hackathon demo needs to be fast)
- Safety (prevent infinite loops)
**Why NOT just token budget?**
- Want early exit when answer is good
- Quality matters, not just quantity
- Better user experience
**Why THIS pattern?**
- Best of both worlds
- Clear separation (quality vs resources)
- Each judge has single responsibility
---
## 4. Break/Stopping Pattern
### Decision: Three-Tier Break Conditions
**Pattern**:
```python
def should_continue(state: ResearchState) -> bool:
"""Multi-tier stopping logic"""
# Tier 1: Quality-based (ideal stop)
if quality_judge.is_sufficient(state.question, state.evidence):
state.stop_reason = "sufficient_evidence"
return False
# Tier 2: Budget-based (cost control)
if state.tokens_used >= config.max_tokens:
state.stop_reason = "token_budget_exceeded"
return False
# Tier 3: Iteration-based (safety)
if state.iterations >= config.max_iterations:
state.stop_reason = "max_iterations_reached"
return False
# Tier 4: Time-based (demo friendly)
if state.time_elapsed >= config.max_time:
state.stop_reason = "timeout"
return False
return True # Continue researching
```
**Configuration**:
```toml
[research.limits]
max_tokens = 50000 # ~$0.50 at Claude pricing
max_iterations = 5 # Reasonable depth
max_time_seconds = 120 # 2 minutes for demo
judge_threshold = 0.8 # Quality confidence score
```
**Why multiple conditions?**
- Defense in depth
- Different failure modes
- Graceful degradation
**Why these specific limits?**
- Tokens: Balances cost vs quality
- Iterations: Enough for refinement, not too deep
- Time: Fast enough for live demo
- Judge: High bar for quality
---
## 5. State Management Pattern
### Decision: Pydantic State Machine with Checkpoints
**Pattern**:
```python
class ResearchState(BaseModel):
"""Immutable state snapshots"""
query_id: str
question: str
iteration: int = 0
evidence: List[Evidence] = []
tokens_used: int = 0
search_history: List[SearchQuery] = []
stop_reason: Optional[str] = None
created_at: datetime
updated_at: datetime
class StateManager:
def save_checkpoint(self, state: ResearchState) -> None:
"""Save state to disk"""
path = f".deepresearch/checkpoints/{state.query_id}_iter{state.iteration}.json"
path.write_text(state.model_dump_json(indent=2))
def load_checkpoint(self, query_id: str, iteration: int) -> ResearchState:
"""Resume from checkpoint"""
path = f".deepresearch/checkpoints/{query_id}_iter{iteration}.json"
return ResearchState.model_validate_json(path.read_text())
```
**Directory Structure**:
```
.deepresearch/
βββ state/
β βββ current_123.json # Active research state
βββ checkpoints/
β βββ query_123_iter0.json # Checkpoint after iteration 0
β βββ query_123_iter1.json # Checkpoint after iteration 1
β βββ query_123_iter2.json # Checkpoint after iteration 2
βββ workspace/
βββ query_123/
βββ papers/ # Downloaded PDFs
βββ search_results/ # Raw search results
βββ analysis/ # Intermediate analysis
```
**Why Pydantic?**
- Type safety
- Validation
- Easy serialization
- Integration with Pydantic AI
**Why checkpoints?**
- Resume interrupted research
- Debugging (inspect state at each iteration)
- Cost savings (don't re-query)
- Demo resilience
---
## 6. Tool Interface Pattern
### Decision: Async Unified Tool Protocol
**Pattern**:
```python
from typing import Protocol, Optional, List, Dict
import asyncio
class ResearchTool(Protocol):
"""Standard async interface all tools must implement"""
async def search(
self,
query: str,
max_results: int = 10,
filters: Optional[Dict] = None
) -> List[Evidence]:
"""Execute search and return structured evidence"""
...
def get_metadata(self) -> ToolMetadata:
"""Tool capabilities and requirements"""
...
class PubMedSearchTool:
"""Concrete async implementation"""
def __init__(self):
self._rate_limiter = asyncio.Semaphore(3) # 3 req/sec
self._cache: Dict[str, List[Evidence]] = {}
async def search(self, query: str, max_results: int = 10, **kwargs) -> List[Evidence]:
# Check cache first
cache_key = f"{query}:{max_results}"
if cache_key in self._cache:
return self._cache[cache_key]
async with self._rate_limiter:
# 1. Query PubMed E-utilities API (async httpx)
async with httpx.AsyncClient() as client:
response = await client.get(
"https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi",
params={"db": "pubmed", "term": query, "retmax": max_results}
)
# 2. Parse XML response
# 3. Extract: title, abstract, authors, citations
# 4. Convert to Evidence objects
evidence_list = self._parse_response(response.text)
# Cache results
self._cache[cache_key] = evidence_list
return evidence_list
def get_metadata(self) -> ToolMetadata:
return ToolMetadata(
name="PubMed",
description="Biomedical literature search",
rate_limit="3 requests/second",
requires_api_key=False
)
```
**Parallel Tool Execution**:
```python
async def search_all_tools(query: str, tools: List[ResearchTool]) -> List[Evidence]:
"""Run all tool searches in parallel"""
tasks = [tool.search(query) for tool in tools]
results = await asyncio.gather(*tasks, return_exceptions=True)
# Flatten and filter errors
evidence = []
for result in results:
if isinstance(result, Exception):
logger.warning(f"Tool failed: {result}")
else:
evidence.extend(result)
return evidence
```
**Why Async?**
- Tools are I/O bound (network calls)
- Parallel execution = faster searches
- Better UX (streaming progress)
- Standard in 2025 Python
**Why Protocol?**
- Loose coupling
- Easy to add new tools
- Testable with mocks
- Clear contract
**Why NOT abstract base class?**
- More Pythonic (PEP 544)
- Duck typing friendly
- Runtime checking with isinstance
---
## 7. Report Generation Pattern
### Decision: Structured Output with Citations
**Pattern**:
```python
class DrugCandidate(BaseModel):
name: str
mechanism: str
evidence_quality: Literal["strong", "moderate", "weak"]
clinical_status: str # "FDA approved", "Phase 2", etc.
citations: List[Citation]
class ResearchReport(BaseModel):
query: str
disease_mechanism: str
candidates: List[DrugCandidate]
methodology: str # How we searched
confidence: float
sources_used: List[str]
generated_at: datetime
def to_markdown(self) -> str:
"""Human-readable format"""
...
def to_json(self) -> str:
"""Machine-readable format"""
...
```
**Output Example**:
```markdown
# Research Report: Long COVID Fatigue
## Disease Mechanism
Long COVID fatigue is associated with mitochondrial dysfunction
and persistent inflammation [1, 2].
## Drug Candidates
### 1. Coenzyme Q10 (CoQ10) - STRONG EVIDENCE
- **Mechanism**: Mitochondrial support, ATP production
- **Status**: FDA approved (supplement)
- **Evidence**: 2 randomized controlled trials showing fatigue reduction
- **Citations**:
- Smith et al. (2023) - PubMed: 12345678
- Johnson et al. (2023) - PubMed: 87654321
### 2. Low-dose Naltrexone (LDN) - MODERATE EVIDENCE
- **Mechanism**: Anti-inflammatory, immune modulation
- **Status**: FDA approved (different indication)
- **Evidence**: 3 case studies, 1 ongoing Phase 2 trial
- **Citations**: ...
## Methodology
- Searched PubMed: 45 papers reviewed
- Searched Web: 12 sources
- Clinical trials: 8 trials identified
- Total iterations: 3
- Tokens used: 12,450
## Confidence: 85%
## Sources
- PubMed E-utilities
- ClinicalTrials.gov
- OpenFDA Database
```
**Why structured?**
- Parseable by other systems
- Consistent format
- Easy to validate
- Good for datasets
**Why markdown?**
- Human-readable
- Renders nicely in Gradio
- Easy to convert to PDF
- Standard format
---
## 8. Error Handling Pattern
### Decision: Graceful Degradation with Fallbacks
**Pattern**:
```python
class ResearchAgent:
def research(self, question: str) -> ResearchReport:
try:
return self._research_with_retry(question)
except TokenBudgetExceeded:
# Return partial results
return self._synthesize_partial(state)
except ToolFailure as e:
# Try alternate tools
return self._research_with_fallback(question, failed_tool=e.tool)
except Exception as e:
# Log and return error report
logger.error(f"Research failed: {e}")
return self._error_report(question, error=e)
```
**Why NOT fail fast?**
- Hackathon demo must be robust
- Partial results better than nothing
- Good user experience
**Why NOT silent failures?**
- Need visibility for debugging
- User should know limitations
- Honest about confidence
---
## 9. Configuration Pattern
### Decision: Hydra-inspired but Simpler
**Pattern**:
```toml
# config.toml
[research]
max_iterations = 5
max_tokens = 50000
max_time_seconds = 120
judge_threshold = 0.85
[tools]
enabled = ["pubmed", "web", "trials"]
[tools.pubmed]
max_results = 20
rate_limit = 3 # per second
[tools.web]
engine = "serpapi"
max_results = 10
[llm]
provider = "anthropic"
model = "claude-3-5-sonnet-20241022"
temperature = 0.1
[output]
format = "markdown"
include_citations = true
include_methodology = true
```
**Loading**:
```python
from pathlib import Path
import tomllib
def load_config() -> dict:
config_path = Path("config.toml")
with open(config_path, "rb") as f:
return tomllib.load(f)
```
**Why NOT full Hydra?**
- Simpler for hackathon
- Easier to understand
- Faster to modify
- Can upgrade later
**Why TOML?**
- Human-readable
- Standard (PEP 680)
- Better than YAML edge cases
- Native in Python 3.11+
---
## 10. Testing Pattern
### Decision: Three-Level Testing Strategy
**Pattern**:
```python
# Level 1: Unit tests (fast, isolated)
def test_pubmed_tool():
tool = PubMedSearchTool()
results = tool.search("aspirin cardiovascular")
assert len(results) > 0
assert all(isinstance(r, Evidence) for r in results)
# Level 2: Integration tests (tools + agent)
def test_research_loop():
agent = ResearchAgent(config=test_config)
report = agent.research("aspirin repurposing")
assert report.candidates
assert report.confidence > 0
# Level 3: End-to-end tests (full system)
def test_full_workflow():
# Simulate user query through Gradio UI
response = gradio_app.predict("test query")
assert "Drug Candidates" in response
```
**Why three levels?**
- Fast feedback (unit tests)
- Confidence (integration tests)
- Reality check (e2e tests)
**Test Data**:
```python
# tests/fixtures/
- mock_pubmed_response.xml
- mock_web_results.json
- sample_research_query.txt
- expected_report.md
```
---
## 11. Judge Prompt Templates
### Decision: Structured JSON Output with Domain-Specific Criteria
**Quality Judge System Prompt**:
```python
QUALITY_JUDGE_SYSTEM = """You are a medical research quality assessor specializing in drug repurposing.
Your task is to evaluate if collected evidence is sufficient to answer a drug repurposing question.
You assess evidence against four criteria specific to drug repurposing research:
1. MECHANISM: Understanding of the disease's molecular/cellular mechanisms
2. CANDIDATES: Identification of potential drug candidates with known mechanisms
3. EVIDENCE: Clinical or preclinical evidence supporting repurposing
4. SOURCES: Quality and credibility of sources (peer-reviewed > preprints > web)
You MUST respond with valid JSON only. No other text."""
```
**Quality Judge User Prompt**:
```python
QUALITY_JUDGE_USER = """
## Research Question
{question}
## Evidence Collected (Iteration {iteration} of {max_iterations})
{evidence_summary}
## Token Budget
Used: {tokens_used} / {max_tokens}
## Your Assessment
Evaluate the evidence and respond with this exact JSON structure:
```json
{{
"assessment": {{
"mechanism_score": <0-10>,
"mechanism_reasoning": "<Step-by-step analysis of mechanism understanding>",
"candidates_score": <0-10>,
"candidates_found": ["<drug1>", "<drug2>", ...],
"evidence_score": <0-10>,
"evidence_reasoning": "<Critical evaluation of clinical/preclinical support>",
"sources_score": <0-10>,
"sources_breakdown": {{
"peer_reviewed": <count>,
"clinical_trials": <count>,
"preprints": <count>,
"other": <count>
}}
}},
"overall_confidence": <0.0-1.0>,
"sufficient": <true/false>,
"gaps": ["<missing info 1>", "<missing info 2>"],
"recommended_searches": ["<search query 1>", "<search query 2>"],
"recommendation": "<continue|synthesize>"
}}
```
Decision rules:
- sufficient=true if overall_confidence >= 0.8 AND mechanism_score >= 6 AND candidates_score >= 6
- sufficient=true if remaining budget < 10% (must synthesize with what we have)
- Otherwise, provide recommended_searches to fill gaps
"""
```
**Report Synthesis Prompt**:
```python
SYNTHESIS_PROMPT = """You are a medical research synthesizer creating a drug repurposing report.
## Research Question
{question}
## Collected Evidence
{all_evidence}
## Judge Assessment
{final_assessment}
## Your Task
Create a comprehensive research report with this structure:
1. **Executive Summary** (2-3 sentences)
2. **Disease Mechanism** - What we understand about the condition
3. **Drug Candidates** - For each candidate:
- Drug name and current FDA status
- Proposed mechanism for this condition
- Evidence quality (strong/moderate/weak)
- Key citations
4. **Methodology** - How we searched (tools used, queries, iterations)
5. **Limitations** - What we couldn't find or verify
6. **Confidence Score** - Overall confidence in findings
Format as Markdown. Include PubMed IDs as citations [PMID: 12345678].
Be scientifically accurate. Do not hallucinate drug names or mechanisms.
If evidence is weak, say so clearly."""
```
**Why Structured JSON?**
- Parseable by code (not just LLM output)
- Consistent format for logging/debugging
- Can trigger specific actions (continue vs synthesize)
- Testable with expected outputs
**Why Domain-Specific Criteria?**
- Generic "is this good?" prompts fail
- Drug repurposing has specific requirements
- Physician on team validated criteria
- Maps to real research workflow
---
## 12. MCP Server Integration (Hackathon Track)
### Decision: Tools as MCP Servers for Reusability
**Why MCP?**
- Hackathon has dedicated MCP track
- Makes our tools reusable by others
- Standard protocol (Model Context Protocol)
- Future-proof (industry adoption growing)
**Architecture**:
```
βββββββββββββββββββββββββββββββββββββββββββββββββββ
β DeepCritical Agent β
β (uses tools directly OR via MCP) β
βββββββββββββββββββββββββββββββββββββββββββββββββββ
β
ββββββββββββββΌβββββββββββββ
β β β
βββββββββββββββ ββββββββββββ βββββββββββββββββ
β PubMed MCP β β Web MCP β β Trials MCP β
β Server β β Server β β Server β
βββββββββββββββ ββββββββββββ βββββββββββββββββ
β β β
β β β
PubMed API Brave/DDG ClinicalTrials.gov
```
**PubMed MCP Server Implementation**:
```python
# src/mcp_servers/pubmed_server.py
from fastmcp import FastMCP
mcp = FastMCP("PubMed Research Tool")
@mcp.tool()
async def search_pubmed(
query: str,
max_results: int = 10,
date_range: str = "5y"
) -> dict:
"""
Search PubMed for biomedical literature.
Args:
query: Search terms (supports PubMed syntax like [MeSH])
max_results: Maximum papers to return (default 10, max 100)
date_range: Time filter - "1y", "5y", "10y", or "all"
Returns:
dict with papers list containing title, abstract, authors, pmid, date
"""
tool = PubMedSearchTool()
results = await tool.search(query, max_results)
return {
"query": query,
"count": len(results),
"papers": [r.model_dump() for r in results]
}
@mcp.tool()
async def get_paper_details(pmid: str) -> dict:
"""
Get full details for a specific PubMed paper.
Args:
pmid: PubMed ID (e.g., "12345678")
Returns:
Full paper metadata including abstract, MeSH terms, references
"""
tool = PubMedSearchTool()
return await tool.get_details(pmid)
if __name__ == "__main__":
mcp.run()
```
**Running the MCP Server**:
```bash
# Start the server
python -m src.mcp_servers.pubmed_server
# Or with uvx (recommended)
uvx fastmcp run src/mcp_servers/pubmed_server.py
# Note: fastmcp uses stdio transport by default, which is perfect
# for local integration with Claude Desktop or the main agent.
```
**Claude Desktop Integration** (for demo):
```json
// ~/Library/Application Support/Claude/claude_desktop_config.json
{
"mcpServers": {
"pubmed": {
"command": "python",
"args": ["-m", "src.mcp_servers.pubmed_server"],
"cwd": "/path/to/deepcritical"
}
}
}
```
**Why FastMCP?**
- Simple decorator syntax
- Handles protocol complexity
- Good docs and examples
- Works with Claude Desktop and API
**MCP Track Submission Requirements**:
- [ ] At least one tool as MCP server
- [ ] README with setup instructions
- [ ] Demo showing MCP usage
- [ ] Bonus: Multiple tools as MCP servers
---
## 13. Gradio UI Pattern (Hackathon Track)
### Decision: Streaming Progress with Modern UI
**Pattern**:
```python
import gradio as gr
from typing import Generator
def research_with_streaming(question: str) -> Generator[str, None, None]:
"""Stream research progress to UI"""
yield "π Starting research...\n\n"
agent = ResearchAgent()
async for event in agent.research_stream(question):
match event.type:
case "search_start":
yield f"π Searching {event.tool}...\n"
case "search_complete":
yield f"β
Found {event.count} results from {event.tool}\n"
case "judge_thinking":
yield f"π€ Evaluating evidence quality...\n"
case "judge_decision":
yield f"π Confidence: {event.confidence:.0%}\n"
case "iteration_complete":
yield f"π Iteration {event.iteration} complete\n\n"
case "synthesis_start":
yield f"π Generating report...\n"
case "complete":
yield f"\n---\n\n{event.report}"
# Gradio 5 UI
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π¬ DeepCritical: Drug Repurposing Research Agent")
gr.Markdown("Ask a question about potential drug repurposing opportunities.")
with gr.Row():
with gr.Column(scale=2):
question = gr.Textbox(
label="Research Question",
placeholder="What existing drugs might help treat long COVID fatigue?",
lines=2
)
examples = gr.Examples(
examples=[
"What existing drugs might help treat long COVID fatigue?",
"Find existing drugs that might slow Alzheimer's progression",
"Which diabetes drugs show promise for cancer treatment?"
],
inputs=question
)
submit = gr.Button("π Start Research", variant="primary")
with gr.Column(scale=3):
output = gr.Markdown(label="Research Progress & Report")
submit.click(
fn=research_with_streaming,
inputs=question,
outputs=output,
)
demo.launch()
```
**Why Streaming?**
- User sees progress, not loading spinner
- Builds trust (system is working)
- Better UX for long operations
- Gradio 5 native support
**Why gr.Markdown Output?**
- Research reports are markdown
- Renders citations nicely
- Code blocks for methodology
- Tables for drug comparisons
---
## Summary: Design Decision Table
| # | Question | Decision | Why |
|---|----------|----------|-----|
| 1 | **Architecture** | Orchestrator with search-judge loop | Clear, testable, proven |
| 2 | **Tools** | Static registry, dynamic selection | Balance flexibility vs simplicity |
| 3 | **Judge** | Dual (quality + budget) | Quality + cost control |
| 4 | **Stopping** | Four-tier conditions | Defense in depth |
| 5 | **State** | Pydantic + checkpoints | Type-safe, resumable |
| 6 | **Tool Interface** | Async Protocol + parallel execution | Fast I/O, modern Python |
| 7 | **Output** | Structured + Markdown | Human & machine readable |
| 8 | **Errors** | Graceful degradation + fallbacks | Robust for demo |
| 9 | **Config** | TOML (Hydra-inspired) | Simple, standard |
| 10 | **Testing** | Three levels | Fast feedback + confidence |
| 11 | **Judge Prompts** | Structured JSON + domain criteria | Parseable, medical-specific |
| 12 | **MCP** | Tools as MCP servers | Hackathon track, reusability |
| 13 | **UI** | Gradio 5 streaming | Progress visibility, modern UX |
---
## Answers to Specific Questions
### "What's the orchestrator pattern?"
**Answer**: See Section 1 - Iterative Research Orchestrator with search-judge loop
### "LLM-as-judge or token budget?"
**Answer**: Both - See Section 3 (Dual-Judge System) and Section 4 (Three-Tier Break Conditions)
### "What's the break pattern?"
**Answer**: See Section 4 - Three stopping conditions: quality threshold, token budget, max iterations
### "Should we use agent factories?"
**Answer**: No - See Section 2. Static tool registry is simpler for 6-day timeline
### "How do we handle state?"
**Answer**: See Section 5 - Pydantic state machine with checkpoints
---
## Appendix: Complete Data Models
```python
# src/deepresearch/models.py
from pydantic import BaseModel, Field
from typing import List, Optional, Literal
from datetime import datetime
class Citation(BaseModel):
"""Reference to a source"""
source_type: Literal["pubmed", "web", "trial", "fda"]
identifier: str # PMID, URL, NCT number, etc.
title: str
authors: Optional[List[str]] = None
date: Optional[str] = None
url: Optional[str] = None
class Evidence(BaseModel):
"""Single piece of evidence from search"""
content: str
source: Citation
relevance_score: float = Field(ge=0, le=1)
evidence_type: Literal["mechanism", "candidate", "clinical", "safety"]
class DrugCandidate(BaseModel):
"""Potential drug for repurposing"""
name: str
generic_name: Optional[str] = None
mechanism: str
current_indications: List[str]
proposed_mechanism: str
evidence_quality: Literal["strong", "moderate", "weak"]
fda_status: str
citations: List[Citation]
class JudgeAssessment(BaseModel):
"""Output from quality judge"""
mechanism_score: int = Field(ge=0, le=10)
candidates_score: int = Field(ge=0, le=10)
evidence_score: int = Field(ge=0, le=10)
sources_score: int = Field(ge=0, le=10)
overall_confidence: float = Field(ge=0, le=1)
sufficient: bool
gaps: List[str]
recommended_searches: List[str]
recommendation: Literal["continue", "synthesize"]
class ResearchState(BaseModel):
"""Complete state of a research session"""
query_id: str
question: str
iteration: int = 0
evidence: List[Evidence] = []
assessments: List[JudgeAssessment] = []
tokens_used: int = 0
search_history: List[str] = []
stop_reason: Optional[str] = None
created_at: datetime = Field(default_factory=datetime.utcnow)
updated_at: datetime = Field(default_factory=datetime.utcnow)
class ResearchReport(BaseModel):
"""Final output report"""
query: str
executive_summary: str
disease_mechanism: str
candidates: List[DrugCandidate]
methodology: str
limitations: str
confidence: float
sources_used: int
tokens_used: int
iterations: int
generated_at: datetime = Field(default_factory=datetime.utcnow)
def to_markdown(self) -> str:
"""Render as markdown for Gradio"""
md = f"# Research Report: {self.query}\n\n"
md += f"## Executive Summary\n{self.executive_summary}\n\n"
md += f"## Disease Mechanism\n{self.disease_mechanism}\n\n"
md += "## Drug Candidates\n\n"
for i, drug in enumerate(self.candidates, 1):
md += f"### {i}. {drug.name} - {drug.evidence_quality.upper()} EVIDENCE\n"
md += f"- **Mechanism**: {drug.proposed_mechanism}\n"
md += f"- **FDA Status**: {drug.fda_status}\n"
md += f"- **Current Uses**: {', '.join(drug.current_indications)}\n"
md += f"- **Citations**: {len(drug.citations)} sources\n\n"
md += f"## Methodology\n{self.methodology}\n\n"
md += f"## Limitations\n{self.limitations}\n\n"
md += f"## Confidence: {self.confidence:.0%}\n"
return md
```
---
## 14. Alternative Frameworks Considered
We researched major agent frameworks before settling on our stack. Here's why we chose what we chose, and what we'd steal if we're shipping like animals and have time for Gucci upgrades.
### Frameworks Evaluated
| Framework | Repo | What It Does |
|-----------|------|--------------|
| **Microsoft AutoGen** | [github.com/microsoft/autogen](https://github.com/microsoft/autogen) | Multi-agent orchestration, complex workflows |
| **Claude Agent SDK** | [github.com/anthropics/claude-agent-sdk-python](https://github.com/anthropics/claude-agent-sdk-python) | Anthropic's official agent framework |
| **Pydantic AI** | [github.com/pydantic/pydantic-ai](https://github.com/pydantic/pydantic-ai) | Type-safe agents, structured outputs |
### Why NOT AutoGen (Microsoft)?
**Pros:**
- Battle-tested multi-agent orchestration
- `reflect_on_tool_use` - model reviews its own tool results
- `max_tool_iterations` - built-in iteration limits
- Concurrent tool execution
- Rich ecosystem (AutoGen Studio, benchmarks)
**Cons for MVP:**
- Heavy dependency tree (50+ packages)
- Complex configuration (YAML + Python)
- Overkill for single-agent search-judge loop
- Learning curve eats into 6-day timeline
**Verdict:** Great for multi-agent systems. Overkill for our MVP.
### Why NOT Claude Agent SDK (Anthropic)?
**Pros:**
- Official Anthropic framework
- Clean `@tool` decorator pattern
- In-process MCP servers (no subprocess)
- Hooks for pre/post tool execution
- Direct Claude Code integration
**Cons for MVP:**
- Requires Claude Code CLI bundled
- Node.js dependency for some features
- Designed for Claude Code ecosystem, not standalone agents
- Less flexible for custom LLM providers
**Verdict:** Would be great if we were building ON Claude Code. We're building a standalone agent.
### Why Pydantic AI + FastMCP (Our Choice)
**Pros:**
- β
Simple, Pythonic API
- β
Native async/await
- β
Type-safe with Pydantic
- β
Works with any LLM provider
- β
FastMCP for clean MCP servers
- β
Minimal dependencies
- β
Can ship MVP in 6 days
**Cons:**
- Newer framework (less battle-tested)
- Smaller ecosystem
- May need to build more from scratch
**Verdict:** Right tool for the job. Ship fast, iterate later.
---
## 15. Stretch Goals: Gucci Bangers (If We're Shipping Like Animals)
If MVP ships early and we're crushing it, here's what we'd steal from other frameworks:
### Tier 1: Quick Wins (2-4 hours each)
#### From Claude Agent SDK: `@tool` Decorator Pattern
Replace our Protocol-based tools with cleaner decorators:
```python
# CURRENT (Protocol-based)
class PubMedSearchTool:
async def search(self, query: str, max_results: int = 10) -> List[Evidence]:
...
# UPGRADE (Decorator-based, stolen from Claude SDK)
from claude_agent_sdk import tool
@tool("search_pubmed", "Search PubMed for biomedical papers", {
"query": str,
"max_results": int
})
async def search_pubmed(args):
results = await _do_pubmed_search(args["query"], args["max_results"])
return {"content": [{"type": "text", "text": json.dumps(results)}]}
```
**Why it's Gucci:** Cleaner syntax, automatic schema generation, less boilerplate.
#### From AutoGen: Reflect on Tool Use
Add a reflection step where the model reviews its own tool results:
```python
# CURRENT: Judge evaluates evidence
assessment = await judge.assess(question, evidence)
# UPGRADE: Add reflection step (stolen from AutoGen)
class ReflectiveJudge:
async def assess_with_reflection(self, question, evidence, tool_results):
# First pass: raw assessment
initial = await self._assess(question, evidence)
# Reflection: "Did I use the tools correctly?"
reflection = await self._reflect_on_tool_use(tool_results)
# Final: combine assessment + reflection
return self._combine(initial, reflection)
```
**Why it's Gucci:** Catches tool misuse, improves accuracy, more robust judge.
### Tier 2: Medium Lifts (4-8 hours each)
#### From AutoGen: Concurrent Tool Execution
Run multiple tools in parallel with proper error handling:
```python
# CURRENT: Sequential with asyncio.gather
results = await asyncio.gather(*[tool.search(query) for tool in tools])
# UPGRADE: AutoGen-style with cancellation + timeout
from autogen_core import CancellationToken
async def execute_tools_concurrent(tools, query, timeout=30):
token = CancellationToken()
async def run_with_timeout(tool):
try:
return await asyncio.wait_for(
tool.search(query, cancellation_token=token),
timeout=timeout
)
except asyncio.TimeoutError:
token.cancel() # Cancel other tools
return ToolError(f"{tool.name} timed out")
return await asyncio.gather(*[run_with_timeout(t) for t in tools])
```
**Why it's Gucci:** Proper timeout handling, cancellation propagation, production-ready.
#### From Claude SDK: Hooks System
Add pre/post hooks for logging, validation, cost tracking:
```python
# UPGRADE: Hook system (stolen from Claude SDK)
class HookManager:
async def pre_tool_use(self, tool_name, args):
"""Called before every tool execution"""
logger.info(f"Calling {tool_name} with {args}")
self.cost_tracker.start_timer()
async def post_tool_use(self, tool_name, result, duration):
"""Called after every tool execution"""
self.cost_tracker.record(tool_name, duration)
if result.is_error:
self.error_tracker.record(tool_name, result.error)
```
**Why it's Gucci:** Observability, debugging, cost tracking, production-ready.
### Tier 3: Big Lifts (Post-Hackathon)
#### Full AutoGen Integration
If we want multi-agent capabilities later:
```python
# POST-HACKATHON: Multi-agent drug repurposing
from autogen_agentchat import AssistantAgent, GroupChat
literature_agent = AssistantAgent(
name="LiteratureReviewer",
tools=[pubmed_search, web_search],
system_message="You search and summarize medical literature."
)
mechanism_agent = AssistantAgent(
name="MechanismAnalyzer",
tools=[pathway_db, protein_db],
system_message="You analyze disease mechanisms and drug targets."
)
synthesis_agent = AssistantAgent(
name="ReportSynthesizer",
system_message="You synthesize findings into actionable reports."
)
# Orchestrate multi-agent workflow
group_chat = GroupChat(
agents=[literature_agent, mechanism_agent, synthesis_agent],
max_round=10
)
```
**Why it's Gucci:** True multi-agent collaboration, specialized roles, scalable.
---
## Priority Order for Stretch Goals
| Priority | Feature | Source | Effort | Impact |
|----------|---------|--------|--------|--------|
| 1 | `@tool` decorator | Claude SDK | 2 hrs | High - cleaner code |
| 2 | Reflect on tool use | AutoGen | 3 hrs | High - better accuracy |
| 3 | Hooks system | Claude SDK | 4 hrs | Medium - observability |
| 4 | Concurrent + cancellation | AutoGen | 4 hrs | Medium - robustness |
| 5 | Multi-agent | AutoGen | 8+ hrs | Post-hackathon |
---
## The Bottom Line
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β MVP (Days 1-4): Pydantic AI + FastMCP β
β - Ship working drug repurposing agent β
β - Search-judge loop with PubMed + Web β
β - Gradio UI with streaming β
β - MCP server for hackathon track β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β If Crushing It (Days 5-6): Steal the Gucci β
β - @tool decorators from Claude SDK β
β - Reflect on tool use from AutoGen β
β - Hooks for observability β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Post-Hackathon: Full AutoGen Integration β
β - Multi-agent workflows β
β - Specialized agent roles β
β - Production-grade orchestration β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
**Ship MVP first. Steal bangers if time. Scale later.**
---
## 16. Reference Implementation Resources
We've cloned production-ready repos into `reference_repos/` that we can vendor, copy from, or just USE directly. This section documents what's available and how to leverage it.
### Cloned Repositories
| Repository | Location | What It Provides |
|------------|----------|------------------|
| **pydanticai-research-agent** | `reference_repos/pydanticai-research-agent/` | Complete PydanticAI agent with Brave Search |
| **pubmed-mcp-server** | `reference_repos/pubmed-mcp-server/` | Production-grade PubMed MCP server (TypeScript) |
| **autogen-microsoft** | `reference_repos/autogen-microsoft/` | Microsoft's multi-agent framework |
| **claude-agent-sdk** | `reference_repos/claude-agent-sdk/` | Anthropic's agent SDK with @tool decorator |
### π₯ CHEAT CODE: Production PubMed MCP Already Exists
The `pubmed-mcp-server` is **production-grade** and has EVERYTHING we need:
```bash
# Already available tools in pubmed-mcp-server:
pubmed_search_articles # Search PubMed with filters, date ranges
pubmed_fetch_contents # Get full article details by PMID
pubmed_article_connections # Find citations, related articles
pubmed_research_agent # Generate research plan outlines
pubmed_generate_chart # Create PNG charts from data
```
**Option 1: Use it directly via npx**
```json
{
"mcpServers": {
"pubmed": {
"command": "npx",
"args": ["@cyanheads/pubmed-mcp-server"],
"env": { "NCBI_API_KEY": "your_key" }
}
}
}
```
**Option 2: Vendor the logic into Python**
The TypeScript code in `reference_repos/pubmed-mcp-server/src/` shows exactly how to:
- Construct PubMed E-utilities queries
- Handle rate limiting (3/sec without key, 10/sec with key)
- Parse XML responses
- Extract article metadata
### PydanticAI Research Agent Patterns
The `pydanticai-research-agent` repo provides copy-paste patterns:
**Agent Definition** (`agents/research_agent.py`):
```python
from pydantic_ai import Agent, RunContext
from dataclasses import dataclass
@dataclass
class ResearchAgentDependencies:
brave_api_key: str
session_id: Optional[str] = None
research_agent = Agent(
get_llm_model(),
deps_type=ResearchAgentDependencies,
system_prompt=SYSTEM_PROMPT
)
@research_agent.tool
async def search_web(
ctx: RunContext[ResearchAgentDependencies],
query: str,
max_results: int = 10
) -> List[Dict[str, Any]]:
"""Search with context access via ctx.deps"""
results = await search_web_tool(ctx.deps.brave_api_key, query, max_results)
return results
```
**Brave Search Tool** (`tools/brave_search.py`):
```python
async def search_web_tool(api_key: str, query: str, count: int = 10) -> List[Dict]:
headers = {"X-Subscription-Token": api_key, "Accept": "application/json"}
async with httpx.AsyncClient() as client:
response = await client.get(
"https://api.search.brave.com/res/v1/web/search",
headers=headers,
params={"q": query, "count": count},
timeout=30.0
)
# Handle 429 rate limit, 401 auth errors
data = response.json()
return data.get("web", {}).get("results", [])
```
**Pydantic Models** (`models/research_models.py`):
```python
class BraveSearchResult(BaseModel):
title: str
url: str
description: str
score: float = Field(ge=0.0, le=1.0)
```
### Microsoft Agent Framework Orchestration Patterns
From [deepwiki.com/microsoft/agent-framework](https://deepwiki.com/microsoft/agent-framework/3.4-workflows-and-orchestration):
#### Sequential Orchestration
```
Agent A β Agent B β Agent C (each receives prior outputs)
```
**Use when:** Tasks have dependencies, results inform next steps.
#### Concurrent (Fan-out/Fan-in)
```
ββ Agent A ββ
Dispatcher ββ Agent B ββΌβ Aggregator
ββ Agent C ββ
```
**Use when:** Independent tasks can run in parallel, results need consolidation.
**Our use:** Parallel PubMed + Web search.
#### Handoff Orchestration
```
Coordinator β routes to β Specialist A, B, or C based on request
```
**Use when:** Router decides which search strategy based on query type.
**Our use:** Route "mechanism" vs "clinical trial" vs "drug info" queries.
#### HITL (Human-in-the-Loop)
```
Agent β RequestInfoEvent β Human validates β Agent continues
```
**Use when:** Critical judgment points need human validation.
**Our use:** Optional "approve drug candidates before synthesis" step.
### Recommended Hybrid Pattern for Our Agent
Based on all the research, here's our recommended implementation:
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β 1. ROUTER (Handoff Pattern) β
β - Analyze query type β
β - Choose search strategy β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β 2. SEARCH (Concurrent Pattern) β
β - Fan-out to PubMed + Web in parallel β
β - Timeout handling per AutoGen patterns β
β - Aggregate results β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β 3. JUDGE (Sequential + Budget) β
β - Quality assessment β
β - Token/iteration budget check β
β - Recommend: continue or synthesize β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β 4. SYNTHESIZE (Final Agent) β
β - Generate research report β
β - Include citations β
β - Stream to Gradio UI β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
### Quick Start: Minimal Implementation Path
**Day 1-2: Core Loop**
1. Copy `search_web_tool` from `pydanticai-research-agent/tools/brave_search.py`
2. Implement PubMed search (reference `pubmed-mcp-server/src/` for E-utilities patterns)
3. Wire up basic search-judge loop
**Day 3: Judge + State**
1. Implement quality judge with JSON structured output
2. Add budget judge
3. Add Pydantic state management
**Day 4: UI + MCP**
1. Gradio streaming UI
2. Wrap PubMed tool as FastMCP server
**Day 5-6: Polish + Deploy**
1. HuggingFace Spaces deployment
2. Demo video
3. Stretch goals if time
---
## 17. External Resources & MCP Servers
### Available PubMed MCP Servers (Community)
| Server | Author | Features | Link |
|--------|--------|----------|------|
| **pubmed-mcp-server** | cyanheads | Full E-utilities, research agent, charts | [GitHub](https://github.com/cyanheads/pubmed-mcp-server) |
| **BioMCP** | GenomOncology | PubMed + ClinicalTrials + MyVariant | [GitHub](https://github.com/genomoncology/biomcp) |
| **PubMed-MCP-Server** | JackKuo666 | Basic search, metadata access | [GitHub](https://github.com/JackKuo666/PubMed-MCP-Server) |
### Web Search Options
| Tool | Free Tier | API Key | Async Support |
|------|-----------|---------|---------------|
| **Brave Search** | 2000/month | Required | Yes (httpx) |
| **DuckDuckGo** | Unlimited | No | Yes (duckduckgo-search) |
| **SerpAPI** | None | Required | Yes |
**Recommended:** Start with DuckDuckGo (free, no key), upgrade to Brave for production.
```python
# DuckDuckGo async search (no API key needed!)
from duckduckgo_search import DDGS
async def search_ddg(query: str, max_results: int = 10) -> List[Dict]:
with DDGS() as ddgs:
results = list(ddgs.text(query, max_results=max_results))
return [{"title": r["title"], "url": r["href"], "description": r["body"]} for r in results]
```
---
**Document Status**: Official Architecture Spec
**Review Score**: 100/100 (Ironclad Gucci Banger Edition)
**Sections**: 17 design patterns + data models appendix + reference repos + stretch goals
**Last Updated**: November 2025
|