Spaces:
Running
Running
File size: 27,086 Bytes
dd587c9 f9cb2b7 dd587c9 f9cb2b7 dd587c9 f9cb2b7 dd587c9 f9cb2b7 dd587c9 f5b2917 dd587c9 f5b2917 dd587c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 |
# Phase 12 Implementation Spec: MCP Server Integration
**Goal**: Expose DeepCritical search tools as MCP servers for Track 2 compliance.
**Philosophy**: "MCP is the bridge between tools and LLMs."
**Prerequisite**: Phase 11 complete (all search tools working)
**Priority**: P0 - REQUIRED FOR HACKATHON TRACK 2
**Estimated Time**: 2-3 hours
---
## 1. Why MCP Server?
### Hackathon Requirement
| Requirement | Status Before | Status After |
|-------------|---------------|--------------|
| Must use MCP servers as tools | **MISSING** | **COMPLIANT** |
| Autonomous Agent behavior | **Have it** | Have it |
| Must be Gradio app | **Have it** | Have it |
| Planning/reasoning/execution | **Have it** | Have it |
**Bottom Line**: Without MCP server, we're disqualified from Track 2.
### What MCP Enables
```text
Current State:
Our Tools β Called directly by Python code β Only our app can use them
After MCP:
Our Tools β Exposed via MCP protocol β Claude Desktop, Cursor, ANY MCP client
```
---
## 2. Implementation Options Analysis
### Option A: Gradio MCP (Recommended)
**Pros:**
- Single parameter: `demo.launch(mcp_server=True)`
- Already have Gradio app
- Automatic tool schema generation from docstrings
- Built into Gradio 5.0+
**Cons:**
- Requires Gradio 5.0+ with MCP extras
- Must follow strict docstring format
### Option B: Native MCP SDK (FastMCP)
**Pros:**
- More control over tool definitions
- Explicit server configuration
- Separate from UI concerns
**Cons:**
- Separate server process
- More code to maintain
- Additional dependency
### Decision: **Gradio MCP (Option A)**
Rationale:
1. Already have Gradio app (`src/app.py`)
2. Minimal code changes
3. Judges will appreciate simplicity
4. Follows hackathon's official Gradio guide
---
## 3. Technical Specification
### 3.1 Dependencies
```toml
# pyproject.toml - add MCP extras
dependencies = [
"gradio[mcp]>=5.0.0", # Updated from gradio>=4.0
# ... existing deps
]
```
### 3.2 MCP Tool Functions
Each tool needs:
1. **Type hints** on all parameters
2. **Docstring** with Args section (Google style)
3. **Return type** annotation
4. **`api_name`** parameter for explicit endpoint naming
```python
async def search_pubmed(query: str, max_results: int = 10) -> str:
"""Search PubMed for biomedical literature.
Args:
query: Search query for PubMed (e.g., "metformin alzheimer")
max_results: Maximum number of results to return (1-50)
Returns:
Formatted search results with titles, citations, and abstracts
"""
```
### 3.3 MCP Server URL
Once launched:
```text
http://localhost:7860/gradio_api/mcp/
```
Or on HuggingFace Spaces:
```text
https://[space-id].hf.space/gradio_api/mcp/
```
---
## 4. Implementation
### 4.1 MCP Tool Wrappers (`src/mcp_tools.py`)
```python
"""MCP tool wrappers for DeepCritical search tools.
These functions expose our search tools via MCP protocol.
Each function follows the MCP tool contract:
- Full type hints
- Google-style docstrings with Args section
- Formatted string returns
"""
from src.tools.biorxiv import BioRxivTool
from src.tools.clinicaltrials import ClinicalTrialsTool
from src.tools.pubmed import PubMedTool
# Singleton instances (avoid recreating on each call)
_pubmed = PubMedTool()
_trials = ClinicalTrialsTool()
_biorxiv = BioRxivTool()
async def search_pubmed(query: str, max_results: int = 10) -> str:
"""Search PubMed for peer-reviewed biomedical literature.
Searches NCBI PubMed database for scientific papers matching your query.
Returns titles, authors, abstracts, and citation information.
Args:
query: Search query (e.g., "metformin alzheimer", "drug repurposing cancer")
max_results: Maximum results to return (1-50, default 10)
Returns:
Formatted search results with paper titles, authors, dates, and abstracts
"""
max_results = max(1, min(50, max_results)) # Clamp to valid range
results = await _pubmed.search(query, max_results)
if not results:
return f"No PubMed results found for: {query}"
formatted = [f"## PubMed Results for: {query}\n"]
for i, evidence in enumerate(results, 1):
formatted.append(f"### {i}. {evidence.citation.title}")
formatted.append(f"**Authors**: {', '.join(evidence.citation.authors[:3])}")
formatted.append(f"**Date**: {evidence.citation.date}")
formatted.append(f"**URL**: {evidence.citation.url}")
formatted.append(f"\n{evidence.content}\n")
return "\n".join(formatted)
async def search_clinical_trials(query: str, max_results: int = 10) -> str:
"""Search ClinicalTrials.gov for clinical trial data.
Searches the ClinicalTrials.gov database for trials matching your query.
Returns trial titles, phases, status, conditions, and interventions.
Args:
query: Search query (e.g., "metformin alzheimer", "diabetes phase 3")
max_results: Maximum results to return (1-50, default 10)
Returns:
Formatted clinical trial information with NCT IDs, phases, and status
"""
max_results = max(1, min(50, max_results))
results = await _trials.search(query, max_results)
if not results:
return f"No clinical trials found for: {query}"
formatted = [f"## Clinical Trials for: {query}\n"]
for i, evidence in enumerate(results, 1):
formatted.append(f"### {i}. {evidence.citation.title}")
formatted.append(f"**URL**: {evidence.citation.url}")
formatted.append(f"**Date**: {evidence.citation.date}")
formatted.append(f"\n{evidence.content}\n")
return "\n".join(formatted)
async def search_biorxiv(query: str, max_results: int = 10) -> str:
"""Search bioRxiv/medRxiv for preprint research.
Searches bioRxiv and medRxiv preprint servers for cutting-edge research.
Note: Preprints are NOT peer-reviewed but contain the latest findings.
Args:
query: Search query (e.g., "metformin neuroprotection", "long covid treatment")
max_results: Maximum results to return (1-50, default 10)
Returns:
Formatted preprint results with titles, authors, and abstracts
"""
max_results = max(1, min(50, max_results))
results = await _biorxiv.search(query, max_results)
if not results:
return f"No bioRxiv/medRxiv preprints found for: {query}"
formatted = [f"## Preprint Results for: {query}\n"]
for i, evidence in enumerate(results, 1):
formatted.append(f"### {i}. {evidence.citation.title}")
formatted.append(f"**Authors**: {', '.join(evidence.citation.authors[:3])}")
formatted.append(f"**Date**: {evidence.citation.date}")
formatted.append(f"**URL**: {evidence.citation.url}")
formatted.append(f"\n{evidence.content}\n")
return "\n".join(formatted)
async def search_all_sources(query: str, max_per_source: int = 5) -> str:
"""Search all biomedical sources simultaneously.
Performs parallel search across PubMed, ClinicalTrials.gov, and bioRxiv.
This is the most comprehensive search option for drug repurposing research.
Args:
query: Search query (e.g., "metformin alzheimer", "aspirin cancer prevention")
max_per_source: Maximum results per source (1-20, default 5)
Returns:
Combined results from all sources with source labels
"""
import asyncio
max_per_source = max(1, min(20, max_per_source))
# Run all searches in parallel
pubmed_task = search_pubmed(query, max_per_source)
trials_task = search_clinical_trials(query, max_per_source)
biorxiv_task = search_biorxiv(query, max_per_source)
pubmed_results, trials_results, biorxiv_results = await asyncio.gather(
pubmed_task, trials_task, biorxiv_task, return_exceptions=True
)
formatted = [f"# Comprehensive Search: {query}\n"]
# Add each result section (handle exceptions gracefully)
if isinstance(pubmed_results, str):
formatted.append(pubmed_results)
else:
formatted.append(f"## PubMed\n*Error: {pubmed_results}*\n")
if isinstance(trials_results, str):
formatted.append(trials_results)
else:
formatted.append(f"## Clinical Trials\n*Error: {trials_results}*\n")
if isinstance(biorxiv_results, str):
formatted.append(biorxiv_results)
else:
formatted.append(f"## Preprints\n*Error: {biorxiv_results}*\n")
return "\n---\n".join(formatted)
```
### 4.2 Update Gradio App (`src/app.py`)
```python
"""Gradio UI for DeepCritical agent with MCP server support."""
import os
from collections.abc import AsyncGenerator
from typing import Any
import gradio as gr
from src.agent_factory.judges import JudgeHandler, MockJudgeHandler
from src.mcp_tools import (
search_all_sources,
search_biorxiv,
search_clinical_trials,
search_pubmed,
)
from src.orchestrator_factory import create_orchestrator
from src.tools.biorxiv import BioRxivTool
from src.tools.clinicaltrials import ClinicalTrialsTool
from src.tools.pubmed import PubMedTool
from src.tools.search_handler import SearchHandler
from src.utils.models import OrchestratorConfig
# ... (existing configure_orchestrator and research_agent functions unchanged)
def create_demo() -> Any:
"""
Create the Gradio demo interface with MCP support.
Returns:
Configured Gradio Blocks interface with MCP server enabled
"""
with gr.Blocks(
title="DeepCritical - Drug Repurposing Research Agent",
theme=gr.themes.Soft(),
) as demo:
gr.Markdown("""
# DeepCritical
## AI-Powered Drug Repurposing Research Agent
Ask questions about potential drug repurposing opportunities.
The agent searches PubMed, ClinicalTrials.gov, and bioRxiv/medRxiv preprints.
**Example questions:**
- "What drugs could be repurposed for Alzheimer's disease?"
- "Is metformin effective for cancer treatment?"
- "What existing medications show promise for Long COVID?"
""")
# Main chat interface (existing)
gr.ChatInterface(
fn=research_agent,
type="messages",
title="",
examples=[
"What drugs could be repurposed for Alzheimer's disease?",
"Is metformin effective for treating cancer?",
"What medications show promise for Long COVID treatment?",
"Can statins be repurposed for neurological conditions?",
],
additional_inputs=[
gr.Radio(
choices=["simple", "magentic"],
value="simple",
label="Orchestrator Mode",
info="Simple: Linear (OpenAI/Anthropic) | Magentic: Multi-Agent (OpenAI)",
)
],
)
# MCP Tool Interfaces (exposed via MCP protocol)
gr.Markdown("---\n## MCP Tools (Also Available via Claude Desktop)")
with gr.Tab("PubMed Search"):
gr.Interface(
fn=search_pubmed,
inputs=[
gr.Textbox(label="Query", placeholder="metformin alzheimer"),
gr.Slider(1, 50, value=10, step=1, label="Max Results"),
],
outputs=gr.Markdown(label="Results"),
api_name="search_pubmed",
)
with gr.Tab("Clinical Trials"):
gr.Interface(
fn=search_clinical_trials,
inputs=[
gr.Textbox(label="Query", placeholder="diabetes phase 3"),
gr.Slider(1, 50, value=10, step=1, label="Max Results"),
],
outputs=gr.Markdown(label="Results"),
api_name="search_clinical_trials",
)
with gr.Tab("Preprints"):
gr.Interface(
fn=search_biorxiv,
inputs=[
gr.Textbox(label="Query", placeholder="long covid treatment"),
gr.Slider(1, 50, value=10, step=1, label="Max Results"),
],
outputs=gr.Markdown(label="Results"),
api_name="search_biorxiv",
)
with gr.Tab("Search All"):
gr.Interface(
fn=search_all_sources,
inputs=[
gr.Textbox(label="Query", placeholder="metformin cancer"),
gr.Slider(1, 20, value=5, step=1, label="Max Per Source"),
],
outputs=gr.Markdown(label="Results"),
api_name="search_all",
)
gr.Markdown("""
---
**Note**: This is a research tool and should not be used for medical decisions.
Always consult healthcare professionals for medical advice.
Built with PydanticAI + PubMed, ClinicalTrials.gov & bioRxiv
**MCP Server**: Available at `/gradio_api/mcp/` for Claude Desktop integration
""")
return demo
def main() -> None:
"""Run the Gradio app with MCP server enabled."""
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
mcp_server=True, # Enable MCP server
)
if __name__ == "__main__":
main()
```
---
## 5. TDD Test Suite
### 5.1 Unit Tests (`tests/unit/test_mcp_tools.py`)
```python
"""Unit tests for MCP tool wrappers."""
from unittest.mock import AsyncMock, patch
import pytest
from src.mcp_tools import (
search_all_sources,
search_biorxiv,
search_clinical_trials,
search_pubmed,
)
from src.utils.models import Citation, Evidence
@pytest.fixture
def mock_evidence() -> Evidence:
"""Sample evidence for testing."""
return Evidence(
content="Metformin shows neuroprotective effects in preclinical models.",
citation=Citation(
source="pubmed",
title="Metformin and Alzheimer's Disease",
url="https://pubmed.ncbi.nlm.nih.gov/12345678/",
date="2024-01-15",
authors=["Smith J", "Jones M", "Brown K"],
),
relevance=0.85,
)
class TestSearchPubMed:
"""Tests for search_pubmed MCP tool."""
@pytest.mark.asyncio
async def test_returns_formatted_string(self, mock_evidence: Evidence) -> None:
"""Should return formatted markdown string."""
with patch("src.mcp_tools._pubmed") as mock_tool:
mock_tool.search = AsyncMock(return_value=[mock_evidence])
result = await search_pubmed("metformin alzheimer", 10)
assert isinstance(result, str)
assert "PubMed Results" in result
assert "Metformin and Alzheimer's Disease" in result
assert "Smith J" in result
@pytest.mark.asyncio
async def test_clamps_max_results(self) -> None:
"""Should clamp max_results to valid range (1-50)."""
with patch("src.mcp_tools._pubmed") as mock_tool:
mock_tool.search = AsyncMock(return_value=[])
# Test lower bound
await search_pubmed("test", 0)
mock_tool.search.assert_called_with("test", 1)
# Test upper bound
await search_pubmed("test", 100)
mock_tool.search.assert_called_with("test", 50)
@pytest.mark.asyncio
async def test_handles_no_results(self) -> None:
"""Should return appropriate message when no results."""
with patch("src.mcp_tools._pubmed") as mock_tool:
mock_tool.search = AsyncMock(return_value=[])
result = await search_pubmed("xyznonexistent", 10)
assert "No PubMed results found" in result
class TestSearchClinicalTrials:
"""Tests for search_clinical_trials MCP tool."""
@pytest.mark.asyncio
async def test_returns_formatted_string(self, mock_evidence: Evidence) -> None:
"""Should return formatted markdown string."""
mock_evidence.citation.source = "clinicaltrials" # type: ignore
with patch("src.mcp_tools._trials") as mock_tool:
mock_tool.search = AsyncMock(return_value=[mock_evidence])
result = await search_clinical_trials("diabetes", 10)
assert isinstance(result, str)
assert "Clinical Trials" in result
class TestSearchBiorxiv:
"""Tests for search_biorxiv MCP tool."""
@pytest.mark.asyncio
async def test_returns_formatted_string(self, mock_evidence: Evidence) -> None:
"""Should return formatted markdown string."""
mock_evidence.citation.source = "biorxiv" # type: ignore
with patch("src.mcp_tools._biorxiv") as mock_tool:
mock_tool.search = AsyncMock(return_value=[mock_evidence])
result = await search_biorxiv("preprint search", 10)
assert isinstance(result, str)
assert "Preprint Results" in result
class TestSearchAllSources:
"""Tests for search_all_sources MCP tool."""
@pytest.mark.asyncio
async def test_combines_all_sources(self, mock_evidence: Evidence) -> None:
"""Should combine results from all sources."""
with patch("src.mcp_tools.search_pubmed", new_callable=AsyncMock) as mock_pubmed, \
patch("src.mcp_tools.search_clinical_trials", new_callable=AsyncMock) as mock_trials, \
patch("src.mcp_tools.search_biorxiv", new_callable=AsyncMock) as mock_biorxiv:
mock_pubmed.return_value = "## PubMed Results"
mock_trials.return_value = "## Clinical Trials"
mock_biorxiv.return_value = "## Preprints"
result = await search_all_sources("metformin", 5)
assert "Comprehensive Search" in result
assert "PubMed" in result
assert "Clinical Trials" in result
assert "Preprints" in result
@pytest.mark.asyncio
async def test_handles_partial_failures(self) -> None:
"""Should handle partial failures gracefully."""
with patch("src.mcp_tools.search_pubmed", new_callable=AsyncMock) as mock_pubmed, \
patch("src.mcp_tools.search_clinical_trials", new_callable=AsyncMock) as mock_trials, \
patch("src.mcp_tools.search_biorxiv", new_callable=AsyncMock) as mock_biorxiv:
mock_pubmed.return_value = "## PubMed Results"
mock_trials.side_effect = Exception("API Error")
mock_biorxiv.return_value = "## Preprints"
result = await search_all_sources("metformin", 5)
# Should still contain working sources
assert "PubMed" in result
assert "Preprints" in result
# Should show error for failed source
assert "Error" in result
class TestMCPDocstrings:
"""Tests that docstrings follow MCP format."""
def test_search_pubmed_has_args_section(self) -> None:
"""Docstring must have Args section for MCP schema generation."""
assert search_pubmed.__doc__ is not None
assert "Args:" in search_pubmed.__doc__
assert "query:" in search_pubmed.__doc__
assert "max_results:" in search_pubmed.__doc__
assert "Returns:" in search_pubmed.__doc__
def test_search_clinical_trials_has_args_section(self) -> None:
"""Docstring must have Args section for MCP schema generation."""
assert search_clinical_trials.__doc__ is not None
assert "Args:" in search_clinical_trials.__doc__
def test_search_biorxiv_has_args_section(self) -> None:
"""Docstring must have Args section for MCP schema generation."""
assert search_biorxiv.__doc__ is not None
assert "Args:" in search_biorxiv.__doc__
def test_search_all_sources_has_args_section(self) -> None:
"""Docstring must have Args section for MCP schema generation."""
assert search_all_sources.__doc__ is not None
assert "Args:" in search_all_sources.__doc__
class TestMCPTypeHints:
"""Tests that type hints are complete for MCP."""
def test_search_pubmed_type_hints(self) -> None:
"""All parameters and return must have type hints."""
import inspect
sig = inspect.signature(search_pubmed)
# Check parameter hints
assert sig.parameters["query"].annotation == str
assert sig.parameters["max_results"].annotation == int
# Check return hint
assert sig.return_annotation == str
def test_search_clinical_trials_type_hints(self) -> None:
"""All parameters and return must have type hints."""
import inspect
sig = inspect.signature(search_clinical_trials)
assert sig.parameters["query"].annotation == str
assert sig.parameters["max_results"].annotation == int
assert sig.return_annotation == str
```
### 5.2 Integration Test (`tests/integration/test_mcp_server.py`)
```python
"""Integration tests for MCP server functionality."""
import pytest
class TestMCPServerIntegration:
"""Integration tests for MCP server (requires running app)."""
@pytest.mark.integration
@pytest.mark.asyncio
async def test_mcp_tools_work_end_to_end(self) -> None:
"""Test that MCP tools execute real searches."""
from src.mcp_tools import search_pubmed
result = await search_pubmed("metformin diabetes", 3)
assert isinstance(result, str)
assert "PubMed Results" in result
# Should have actual content (not just "no results")
assert len(result) > 100
```
---
## 6. Claude Desktop Configuration
### 6.1 Local Development
```json
// ~/.config/claude/claude_desktop_config.json (Linux/Mac)
// %APPDATA%\Claude\claude_desktop_config.json (Windows)
{
"mcpServers": {
"deepcritical": {
"url": "http://localhost:7860/gradio_api/mcp/"
}
}
}
```
### 6.2 HuggingFace Spaces
```json
{
"mcpServers": {
"deepcritical": {
"url": "https://MCP-1st-Birthday-deepcritical.hf.space/gradio_api/mcp/"
}
}
}
```
### 6.3 Private Spaces (with auth)
```json
{
"mcpServers": {
"deepcritical": {
"url": "https://your-space.hf.space/gradio_api/mcp/",
"headers": {
"Authorization": "Bearer hf_xxxxxxxxxxxxx"
}
}
}
}
```
---
## 7. Verification Commands
```bash
# 1. Install MCP extras
uv add "gradio[mcp]>=5.0.0"
# 2. Run unit tests
uv run pytest tests/unit/test_mcp_tools.py -v
# 3. Run full test suite
make check
# 4. Start server with MCP
uv run python src/app.py
# 5. Verify MCP schema (in another terminal)
curl http://localhost:7860/gradio_api/mcp/schema
# 6. Test with MCP Inspector
npx @anthropic/mcp-inspector http://localhost:7860/gradio_api/mcp/
# 7. Integration test (requires running server)
uv run pytest tests/integration/test_mcp_server.py -v -m integration
```
---
## 8. Definition of Done
Phase 12 is **COMPLETE** when:
- [ ] `src/mcp_tools.py` created with all 4 MCP tools
- [ ] `src/app.py` updated with `mcp_server=True`
- [ ] Unit tests in `tests/unit/test_mcp_tools.py`
- [ ] Integration test in `tests/integration/test_mcp_server.py`
- [ ] `pyproject.toml` updated with `gradio[mcp]`
- [ ] MCP schema accessible at `/gradio_api/mcp/schema`
- [ ] Claude Desktop can connect and use tools
- [ ] All unit tests pass
- [ ] Lints pass
---
## 9. Demo Script for Judges
### Show MCP Integration Works
1. **Start the server**:
```bash
uv run python src/app.py
```
2. **Show Claude Desktop using our tools**:
- Open Claude Desktop with DeepCritical MCP configured
- Ask: "Search PubMed for metformin Alzheimer's"
- Show real results appearing
- Ask: "Now search clinical trials for the same"
- Show combined analysis
3. **Show MCP Inspector**:
```bash
npx @anthropic/mcp-inspector http://localhost:7860/gradio_api/mcp/
```
- Show all 4 tools listed
- Execute `search_pubmed` from inspector
- Show results
---
## 10. Value Delivered
| Before | After |
|--------|-------|
| Tools only usable in our app | Tools usable by ANY MCP client |
| Not Track 2 compliant | **FULLY TRACK 2 COMPLIANT** |
| Can't use with Claude Desktop | Full Claude Desktop integration |
**Prize Impact**:
- Without MCP: **Disqualified from Track 2**
- With MCP: **Eligible for $2,500 1st place**
---
## 11. Files to Create/Modify
| File | Action | Purpose |
|------|--------|---------|
| `src/mcp_tools.py` | CREATE | MCP tool wrapper functions |
| `src/app.py` | MODIFY | Add `mcp_server=True`, add tool tabs |
| `pyproject.toml` | MODIFY | Add `gradio[mcp]>=5.0.0` |
| `tests/unit/test_mcp_tools.py` | CREATE | Unit tests for MCP tools |
| `tests/integration/test_mcp_server.py` | CREATE | Integration tests |
| `README.md` | MODIFY | Add MCP usage instructions |
---
## 12. Architecture After Phase 12
```text
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Claude Desktop / Cursor β
β (MCP Client) β
βββββββββββββββββββββββββββββββ¬βββββββββββββββββββββββββββββββββββ
β MCP Protocol
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Gradio MCP Server β
β /gradio_api/mcp/ β
β ββββββββββββββββ ββββββββββββββββ ββββββββββββββββ βββββββββββ β
β βsearch_pubmed β βsearch_trials β βsearch_biorxivβ βsearch_ β β
β β β β β β β βall β β
β ββββββββ¬ββββββββ ββββββββ¬ββββββββ ββββββββ¬ββββββββ ββββββ¬βββββ β
βββββββββββΌβββββββββββββββββΌβββββββββββββββββΌβββββββββββββββΌβββββββ
β β β β
βΌ βΌ βΌ βΌ
ββββββββββββ ββββββββββββ ββββββββββββ (calls all)
βPubMedToolβ βTrials β βBioRxiv β
β β βTool β βTool β
ββββββββββββ ββββββββββββ ββββββββββββ
```
**This is the MCP compliance stack.**
|