DeepCritical / src /utils /config.py
VibecoderMcSwaggins's picture
feat(phase1): Foundation & Tooling complete
069f0a0
raw
history blame
2.89 kB
"""Application configuration using Pydantic Settings."""
import logging
from typing import Literal
import structlog
from pydantic import Field
from pydantic_settings import BaseSettings, SettingsConfigDict
from src.utils.exceptions import ConfigurationError
class Settings(BaseSettings):
"""Strongly-typed application settings."""
model_config = SettingsConfigDict(
env_file=".env",
env_file_encoding="utf-8",
case_sensitive=False,
extra="ignore",
)
# LLM Configuration
openai_api_key: str | None = Field(default=None, description="OpenAI API key")
anthropic_api_key: str | None = Field(default=None, description="Anthropic API key")
llm_provider: Literal["openai", "anthropic"] = Field(
default="openai", description="Which LLM provider to use"
)
openai_model: str = Field(default="gpt-4o", description="OpenAI model name")
anthropic_model: str = Field(
default="claude-3-5-sonnet-20241022", description="Anthropic model"
)
# PubMed Configuration
ncbi_api_key: str | None = Field(
default=None, description="NCBI API key for higher rate limits"
)
# Agent Configuration
max_iterations: int = Field(default=10, ge=1, le=50)
search_timeout: int = Field(default=30, description="Seconds to wait for search")
# Logging
log_level: Literal["DEBUG", "INFO", "WARNING", "ERROR"] = "INFO"
def get_api_key(self) -> str:
"""Get the API key for the configured provider."""
if self.llm_provider == "openai":
if not self.openai_api_key:
raise ConfigurationError("OPENAI_API_KEY not set")
return self.openai_api_key
if self.llm_provider == "anthropic":
if not self.anthropic_api_key:
raise ConfigurationError("ANTHROPIC_API_KEY not set")
return self.anthropic_api_key
raise ConfigurationError(f"Unknown LLM provider: {self.llm_provider}")
def get_settings() -> Settings:
"""Factory function to get settings (allows mocking in tests)."""
return Settings()
def configure_logging(settings: Settings) -> None:
"""Configure structured logging with the configured log level."""
# Set stdlib logging level from settings
logging.basicConfig(
level=getattr(logging, settings.log_level),
format="%(message)s",
)
structlog.configure(
processors=[
structlog.stdlib.filter_by_level,
structlog.stdlib.add_logger_name,
structlog.stdlib.add_log_level,
structlog.processors.TimeStamper(fmt="iso"),
structlog.processors.JSONRenderer(),
],
wrapper_class=structlog.stdlib.BoundLogger,
context_class=dict,
logger_factory=structlog.stdlib.LoggerFactory(),
)
# Singleton for easy import
settings = get_settings()