VibecoderMcSwaggins's picture
fix: add type ignore comment for Agent instantiation in JudgeHandler
9760706
raw
history blame
5.88 kB
"""Judge handler for evidence assessment using PydanticAI."""
from typing import Any, cast
import structlog
from pydantic_ai import Agent
from pydantic_ai.models.anthropic import AnthropicModel
from pydantic_ai.models.openai import OpenAIModel
from src.prompts.judge import (
SYSTEM_PROMPT,
format_empty_evidence_prompt,
format_user_prompt,
)
from src.utils.config import settings
from src.utils.models import AssessmentDetails, Evidence, JudgeAssessment
logger = structlog.get_logger()
def get_model() -> Any:
"""Get the LLM model based on configuration."""
provider = settings.llm_provider
if provider == "anthropic":
return AnthropicModel(settings.anthropic_model)
if provider != "openai":
logger.warning("Unknown LLM provider, defaulting to OpenAI", provider=provider)
return OpenAIModel(settings.openai_model)
class JudgeHandler:
"""
Handles evidence assessment using an LLM with structured output.
Uses PydanticAI to ensure responses match the JudgeAssessment schema.
"""
def __init__(self, model: Any = None) -> None:
"""
Initialize the JudgeHandler.
Args:
model: Optional PydanticAI model. If None, uses config default.
"""
self.model = model or get_model()
self.agent = Agent(
model=self.model,
output_type=JudgeAssessment,
system_prompt=SYSTEM_PROMPT,
retries=3,
)
async def assess(
self,
question: str,
evidence: list[Evidence],
) -> JudgeAssessment:
"""
Assess evidence and determine if it's sufficient.
Args:
question: The user's research question
evidence: List of Evidence objects from search
Returns:
JudgeAssessment with evaluation results
Raises:
JudgeError: If assessment fails after retries
"""
logger.info(
"Starting evidence assessment",
question=question[:100],
evidence_count=len(evidence),
)
# Format the prompt based on whether we have evidence
if evidence:
user_prompt = format_user_prompt(question, evidence)
else:
user_prompt = format_empty_evidence_prompt(question)
try:
# Run the agent with structured output
result = await self.agent.run(user_prompt)
assessment = cast(JudgeAssessment, result.data) # type: ignore[attr-defined]
logger.info(
"Assessment complete",
sufficient=assessment.sufficient,
recommendation=assessment.recommendation,
confidence=assessment.confidence,
)
return assessment
except Exception as e:
logger.error("Assessment failed", error=str(e))
# Return a safe default assessment on failure
return self._create_fallback_assessment(question, str(e))
def _create_fallback_assessment(
self,
question: str,
error: str,
) -> JudgeAssessment:
"""
Create a fallback assessment when LLM fails.
Args:
question: The original question
error: The error message
Returns:
Safe fallback JudgeAssessment
"""
return JudgeAssessment(
details=AssessmentDetails(
mechanism_score=0,
mechanism_reasoning="Assessment failed due to LLM error",
clinical_evidence_score=0,
clinical_reasoning="Assessment failed due to LLM error",
drug_candidates=[],
key_findings=[],
),
sufficient=False,
confidence=0.0,
recommendation="continue",
next_search_queries=[
f"{question} mechanism",
f"{question} clinical trials",
f"{question} drug candidates",
],
reasoning=f"Assessment failed: {error}. Recommend retrying with refined queries.",
)
class MockJudgeHandler:
"""
Mock JudgeHandler for testing without LLM calls.
Use this in unit tests to avoid API calls.
"""
def __init__(self, mock_response: JudgeAssessment | None = None) -> None:
"""
Initialize with optional mock response.
Args:
mock_response: The assessment to return. If None, uses default.
"""
self.mock_response = mock_response
self.call_count = 0
self.last_question: str | None = None
self.last_evidence: list[Evidence] | None = None
async def assess(
self,
question: str,
evidence: list[Evidence],
) -> JudgeAssessment:
"""Return the mock response."""
self.call_count += 1
self.last_question = question
self.last_evidence = evidence
if self.mock_response:
return self.mock_response
min_evidence = 3
# Default mock response
return JudgeAssessment(
details=AssessmentDetails(
mechanism_score=7,
mechanism_reasoning="Mock assessment - good mechanism evidence",
clinical_evidence_score=6,
clinical_reasoning="Mock assessment - moderate clinical evidence",
drug_candidates=["Drug A", "Drug B"],
key_findings=["Finding 1", "Finding 2"],
),
sufficient=len(evidence) >= min_evidence,
confidence=0.75,
recommendation="synthesize" if len(evidence) >= min_evidence else "continue",
next_search_queries=["query 1", "query 2"] if len(evidence) < min_evidence else [],
reasoning="Mock assessment for testing purposes",
)