Spaces:
Running
Running
| # ============== LLM CONFIGURATION ============== | |
| # Provider: "openai", "anthropic", or "huggingface" | |
| LLM_PROVIDER=openai | |
| # API Keys (at least one required for full LLM analysis) | |
| OPENAI_API_KEY=sk-your-key-here | |
| ANTHROPIC_API_KEY=sk-ant-your-key-here | |
| # Model names (optional - sensible defaults set in config.py) | |
| # OPENAI_MODEL=gpt-5.1 | |
| # ANTHROPIC_MODEL=claude-sonnet-4-5-20250929 | |
| # ============== HUGGINGFACE CONFIGURATION ============== | |
| # HuggingFace Token - enables gated models and higher rate limits | |
| # Get yours at: https://huggingface.co/settings/tokens | |
| # | |
| # WITHOUT HF_TOKEN: Falls back to ungated models (zephyr-7b-beta, Qwen2-7B) | |
| # WITH HF_TOKEN: Uses gated models (Llama 3.1, Gemma-2) via inference providers | |
| # | |
| # For HuggingFace Spaces deployment: | |
| # Set this as a "Secret" in Space Settings -> Variables and secrets | |
| # Users/judges don't need their own token - the Space secret is used | |
| # | |
| HF_TOKEN=hf_your-token-here | |
| # Alternative: HUGGINGFACE_API_KEY (same as HF_TOKEN) | |
| # Default HuggingFace model for inference (gated, requires auth) | |
| # Can be overridden in UI dropdown | |
| # Latest reasoning models: Qwen3-Next-80B-A3B-Thinking, Qwen3-Next-80B-A3B-Instruct, Llama-3.3-70B-Instruct | |
| HUGGINGFACE_MODEL=Qwen/Qwen3-Next-80B-A3B-Thinking | |
| # Fallback models for HuggingFace Inference API (comma-separated) | |
| # Models are tried in order until one succeeds | |
| # Format: model1,model2,model3 | |
| # Latest reasoning models first, then reliable fallbacks | |
| # Reasoning models: Qwen3-Next (thinking/instruct), Llama-3.3-70B, Qwen3-235B | |
| # Fallbacks: Llama-3.1-8B, Zephyr-7B (ungated), Qwen2-7B (ungated) | |
| HF_FALLBACK_MODELS=Qwen/Qwen3-Next-80B-A3B-Thinking,Qwen/Qwen3-Next-80B-A3B-Instruct,meta-llama/Llama-3.3-70B-Instruct,meta-llama/Llama-3.1-8B-Instruct,HuggingFaceH4/zephyr-7b-beta,Qwen/Qwen2-7B-Instruct | |
| # Override model/provider selection (optional, usually set via UI) | |
| # HF_MODEL=Qwen/Qwen3-Next-80B-A3B-Thinking | |
| # HF_PROVIDER=hyperbolic | |
| # ============== EMBEDDING CONFIGURATION ============== | |
| # Embedding Provider: "openai", "local", or "huggingface" | |
| # Default: "local" (no API key required) | |
| EMBEDDING_PROVIDER=local | |
| # OpenAI Embedding Model (used if EMBEDDING_PROVIDER=openai) | |
| OPENAI_EMBEDDING_MODEL=text-embedding-3-small | |
| # Local Embedding Model (sentence-transformers, used if EMBEDDING_PROVIDER=local) | |
| # BAAI/bge-small-en-v1.5 is newer, faster, and better than all-MiniLM-L6-v2 | |
| LOCAL_EMBEDDING_MODEL=BAAI/bge-small-en-v1.5 | |
| # HuggingFace Embedding Model (used if EMBEDDING_PROVIDER=huggingface) | |
| HUGGINGFACE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2 | |
| # ============== AGENT CONFIGURATION ============== | |
| MAX_ITERATIONS=10 | |
| SEARCH_TIMEOUT=30 | |
| LOG_LEVEL=INFO | |
| # Graph-based execution (experimental) | |
| # USE_GRAPH_EXECUTION=false | |
| # Budget & Rate Limiting | |
| # DEFAULT_TOKEN_LIMIT=100000 | |
| # DEFAULT_TIME_LIMIT_MINUTES=10 | |
| # DEFAULT_ITERATIONS_LIMIT=10 | |
| # ============== WEB SEARCH CONFIGURATION ============== | |
| # Web Search Provider: "serper", "searchxng", "brave", "tavily", or "duckduckgo" | |
| # Default: "duckduckgo" (no API key required) | |
| WEB_SEARCH_PROVIDER=duckduckgo | |
| # Serper API Key (for Google search via Serper) | |
| # SERPER_API_KEY=your-serper-key-here | |
| # SearchXNG Host URL (for self-hosted search) | |
| # SEARCHXNG_HOST=http://localhost:8080 | |
| # Brave Search API Key | |
| # BRAVE_API_KEY=your-brave-key-here | |
| # Tavily API Key | |
| # TAVILY_API_KEY=your-tavily-key-here | |
| # ============== EXTERNAL SERVICES ============== | |
| # PubMed (optional - higher rate limits: 10 req/sec vs 3 req/sec) | |
| NCBI_API_KEY=your-ncbi-key-here | |
| # Modal (optional - for secure code execution sandbox) | |
| # MODAL_TOKEN_ID=your-modal-token-id | |
| # MODAL_TOKEN_SECRET=your-modal-token-secret | |
| # ============== VECTOR DATABASE (ChromaDB) ============== | |
| # ChromaDB storage path | |
| CHROMA_DB_PATH=./chroma_db | |
| # Persist ChromaDB to disk (default: true) | |
| # CHROMA_DB_PERSIST=true | |
| # Remote ChromaDB server (optional) | |
| # CHROMA_DB_HOST=localhost | |
| # CHROMA_DB_PORT=8000 | |
| # ============== RAG SERVICE CONFIGURATION ============== | |
| # ChromaDB collection name for RAG | |
| # RAG_COLLECTION_NAME=deepcritical_evidence | |
| # Number of top results to retrieve from RAG | |
| # RAG_SIMILARITY_TOP_K=5 | |
| # Automatically ingest evidence into RAG | |
| # RAG_AUTO_INGEST=true | |