DeepCritical / src /app.py
Joseph Pollack
fix interface
12522e5 unverified
raw
history blame
32.2 kB
"""Gradio UI for DeepCritical agent with MCP server support."""
import os
from collections.abc import AsyncGenerator
from typing import Any
import gradio as gr
# Try to import HuggingFace support (may not be available in all pydantic-ai versions)
# According to https://ai.pydantic.dev/models/huggingface/, HuggingFace support requires
# pydantic-ai with huggingface extra or pydantic-ai-slim[huggingface]
# There are two ways to use HuggingFace:
# 1. Inference API: HuggingFaceModel with HuggingFaceProvider (uses AsyncInferenceClient internally)
# 2. Local models: Would use transformers directly (not via pydantic-ai)
try:
from huggingface_hub import AsyncInferenceClient
from pydantic_ai.models.huggingface import HuggingFaceModel
from pydantic_ai.providers.huggingface import HuggingFaceProvider
_HUGGINGFACE_AVAILABLE = True
except ImportError:
HuggingFaceModel = None # type: ignore[assignment, misc]
HuggingFaceProvider = None # type: ignore[assignment, misc]
AsyncInferenceClient = None # type: ignore[assignment, misc]
_HUGGINGFACE_AVAILABLE = False
from src.agent_factory.judges import HFInferenceJudgeHandler, JudgeHandler, MockJudgeHandler
from src.orchestrator_factory import create_orchestrator
from src.tools.clinicaltrials import ClinicalTrialsTool
from src.tools.europepmc import EuropePMCTool
from src.tools.pubmed import PubMedTool
from src.tools.search_handler import SearchHandler
from src.utils.config import settings
from src.utils.inference_models import get_available_models, get_available_providers
from src.utils.models import AgentEvent, OrchestratorConfig
def configure_orchestrator(
use_mock: bool = False,
mode: str = "simple",
oauth_token: str | None = None,
hf_model: str | None = None,
hf_provider: str | None = None,
) -> tuple[Any, str]:
"""
Create an orchestrator instance.
Args:
use_mock: If True, use MockJudgeHandler (no API key needed)
mode: Orchestrator mode ("simple" or "advanced")
oauth_token: Optional OAuth token from HuggingFace login
hf_model: Selected HuggingFace model ID
hf_provider: Selected inference provider
Returns:
Tuple of (Orchestrator instance, backend_name)
"""
# Create orchestrator config
config = OrchestratorConfig(
max_iterations=10,
max_results_per_tool=10,
)
# Create search tools
search_handler = SearchHandler(
tools=[PubMedTool(), ClinicalTrialsTool(), EuropePMCTool()],
timeout=config.search_timeout,
)
# Create judge (mock, real, or free tier)
judge_handler: JudgeHandler | MockJudgeHandler | HFInferenceJudgeHandler
backend_info = "Unknown"
# 1. Forced Mock (Unit Testing)
if use_mock:
judge_handler = MockJudgeHandler()
backend_info = "Mock (Testing)"
# 2. API Key (OAuth or Env) - HuggingFace only (OAuth provides HF token)
# Priority: oauth_token > env vars
effective_api_key = oauth_token
if effective_api_key or (os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")):
model: Any | None = None
if effective_api_key:
# Use selected model or fall back to env var/settings
model_name = (
hf_model
or os.getenv("HF_MODEL")
or settings.huggingface_model
or "Qwen/Qwen3-Next-80B-A3B-Thinking"
)
if not _HUGGINGFACE_AVAILABLE:
raise ImportError(
"HuggingFace models are not available in this version of pydantic-ai. "
"Please install with: uv add 'pydantic-ai[huggingface]' or use 'openai'/'anthropic' as the LLM provider."
)
# Inference API - uses HuggingFace Inference API via AsyncInferenceClient
# Per https://ai.pydantic.dev/models/huggingface/#configure-the-provider
# Create AsyncInferenceClient for inference API
hf_client = AsyncInferenceClient(api_key=effective_api_key) # type: ignore[misc]
# Pass client to HuggingFaceProvider for inference API usage
provider = HuggingFaceProvider(hf_client=hf_client) # type: ignore[misc]
model = HuggingFaceModel(model_name, provider=provider) # type: ignore[misc]
backend_info = "API (HuggingFace OAuth)"
else:
backend_info = "API (Env Config)"
judge_handler = JudgeHandler(model=model)
# 3. Free Tier (HuggingFace Inference)
else:
# Pass OAuth token if available (even if not in env vars)
# This allows OAuth login to work with free tier models
# Use selected model and provider if provided
judge_handler = HFInferenceJudgeHandler(
model_id=hf_model,
api_key=oauth_token,
provider=hf_provider,
)
model_display = hf_model.split("/")[-1] if hf_model else "Default"
provider_display = hf_provider or "auto"
backend_info = f"Free Tier ({model_display} via {provider_display})" + (
" (OAuth)" if oauth_token else ""
)
orchestrator = create_orchestrator(
search_handler=search_handler,
judge_handler=judge_handler,
config=config,
mode=mode, # type: ignore
)
return orchestrator, backend_info
def event_to_chat_message(event: AgentEvent) -> dict[str, Any]:
"""
Convert AgentEvent to gr.ChatMessage with metadata for accordion display.
Args:
event: The AgentEvent to convert
Returns:
ChatMessage with metadata for collapsible accordion
"""
# Map event types to accordion titles and determine if pending
event_configs: dict[str, dict[str, Any]] = {
"started": {"title": "πŸš€ Starting Research", "status": "done", "icon": "πŸš€"},
"searching": {"title": "πŸ” Searching Literature", "status": "pending", "icon": "πŸ”"},
"search_complete": {"title": "πŸ“š Search Results", "status": "done", "icon": "πŸ“š"},
"judging": {"title": "🧠 Evaluating Evidence", "status": "pending", "icon": "🧠"},
"judge_complete": {"title": "βœ… Evidence Assessment", "status": "done", "icon": "βœ…"},
"looping": {"title": "πŸ”„ Research Iteration", "status": "pending", "icon": "πŸ”„"},
"synthesizing": {"title": "πŸ“ Synthesizing Report", "status": "pending", "icon": "πŸ“"},
"hypothesizing": {"title": "πŸ”¬ Generating Hypothesis", "status": "pending", "icon": "πŸ”¬"},
"analyzing": {"title": "πŸ“Š Statistical Analysis", "status": "pending", "icon": "πŸ“Š"},
"analysis_complete": {"title": "πŸ“ˆ Analysis Results", "status": "done", "icon": "πŸ“ˆ"},
"streaming": {"title": "πŸ“‘ Processing", "status": "pending", "icon": "πŸ“‘"},
"complete": {"title": None, "status": "done", "icon": "πŸŽ‰"}, # Main response, no accordion
"error": {"title": "❌ Error", "status": "done", "icon": "❌"},
}
config = event_configs.get(
event.type, {"title": f"β€’ {event.type}", "status": "done", "icon": "β€’"}
)
# For complete events, return main response without accordion
if event.type == "complete":
# Return as dict format for Gradio Chatbot compatibility
return {
"role": "assistant",
"content": event.message,
}
# Build metadata for accordion according to Gradio ChatMessage spec
# Metadata keys: title (str), status ("pending"|"done"), log (str), duration (float)
# See: https://www.gradio.app/guides/agents-and-tool-usage
metadata: dict[str, Any] = {}
# Title is required for accordion display - must be string
if config["title"]:
metadata["title"] = str(config["title"])
# Set status (pending shows spinner, done is collapsed)
# Must be exactly "pending" or "done" per Gradio spec
if config["status"] == "pending":
metadata["status"] = "pending"
elif config["status"] == "done":
metadata["status"] = "done"
# Add duration if available in data (must be float)
if event.data and isinstance(event.data, dict) and "duration" in event.data:
duration = event.data["duration"]
if isinstance(duration, int | float):
metadata["duration"] = float(duration)
# Add log info (iteration number, etc.) - must be string
log_parts: list[str] = []
if event.iteration > 0:
log_parts.append(f"Iteration {event.iteration}")
if event.data and isinstance(event.data, dict):
if "tool" in event.data:
log_parts.append(f"Tool: {event.data['tool']}")
if "results_count" in event.data:
log_parts.append(f"Results: {event.data['results_count']}")
if log_parts:
metadata["log"] = " | ".join(log_parts)
# Return as dict format for Gradio Chatbot compatibility
# According to Gradio docs: https://www.gradio.app/guides/agents-and-tool-usage
# ChatMessage format: {"role": "assistant", "content": "...", "metadata": {...}}
# Metadata must have "title" key for accordion display
# Valid metadata keys: title (str), status ("pending"|"done"), log (str), duration (float)
result: dict[str, Any] = {
"role": "assistant",
"content": event.message,
}
# Only add metadata if it has a title (required for accordion display)
# Ensure metadata values match Gradio's expected types
if metadata and metadata.get("title"):
# Ensure status is valid if present
if "status" in metadata:
status = metadata["status"]
if status not in ("pending", "done"):
metadata["status"] = "done" # Default to "done" if invalid
result["metadata"] = metadata
return result
def extract_oauth_info(request: gr.Request | None) -> tuple[str | None, str | None]:
"""
Extract OAuth token and username from Gradio request.
Args:
request: Gradio request object containing OAuth information
Returns:
Tuple of (oauth_token, oauth_username)
"""
oauth_token: str | None = None
oauth_username: str | None = None
if request is None:
return oauth_token, oauth_username
# Try multiple ways to access OAuth token (Gradio API may vary)
# Pattern 1: request.oauth_token.token
if hasattr(request, "oauth_token") and request.oauth_token is not None:
if hasattr(request.oauth_token, "token"):
oauth_token = request.oauth_token.token
elif isinstance(request.oauth_token, str):
oauth_token = request.oauth_token
# Pattern 2: request.headers (fallback)
elif hasattr(request, "headers"):
# OAuth token might be in headers
auth_header = request.headers.get("authorization") or request.headers.get("Authorization")
if auth_header and auth_header.startswith("Bearer "):
oauth_token = auth_header.replace("Bearer ", "")
# Access username from request
if hasattr(request, "username") and request.username:
oauth_username = request.username
# Also try accessing via oauth_profile if available
elif hasattr(request, "oauth_profile") and request.oauth_profile is not None:
if hasattr(request.oauth_profile, "username"):
oauth_username = request.oauth_profile.username
elif hasattr(request.oauth_profile, "name"):
oauth_username = request.oauth_profile.name
return oauth_token, oauth_username
async def yield_auth_messages(
oauth_username: str | None,
oauth_token: str | None,
has_huggingface: bool,
mode: str,
) -> AsyncGenerator[dict[str, Any], None]:
"""
Yield authentication and mode status messages.
Args:
oauth_username: OAuth username if available
oauth_token: OAuth token if available
has_huggingface: Whether HuggingFace credentials are available
mode: Orchestrator mode
Yields:
ChatMessage objects with authentication status
"""
# Show user greeting if logged in via OAuth
if oauth_username:
yield {
"role": "assistant",
"content": f"πŸ‘‹ **Welcome, {oauth_username}!** Using your HuggingFace account.\n\n",
}
# Advanced mode is not supported without OpenAI (which requires manual setup)
# For now, we only support simple mode with HuggingFace
if mode == "advanced":
yield {
"role": "assistant",
"content": (
"⚠️ **Warning**: Advanced mode requires OpenAI API key configuration. "
"Falling back to simple mode.\n\n"
),
}
# Inform user about authentication status
if oauth_token:
yield {
"role": "assistant",
"content": (
"πŸ” **Using HuggingFace OAuth token** - "
"Authenticated via your HuggingFace account.\n\n"
),
}
elif not has_huggingface:
# No keys at all - will use FREE HuggingFace Inference (public models)
yield {
"role": "assistant",
"content": (
"πŸ€— **Free Tier**: Using HuggingFace Inference (Llama 3.1 / Mistral) for AI analysis.\n"
"For premium models or higher rate limits, sign in with HuggingFace above.\n\n"
),
}
async def handle_orchestrator_events(
orchestrator: Any,
message: str,
) -> AsyncGenerator[dict[str, Any], None]:
"""
Handle orchestrator events and yield ChatMessages.
Args:
orchestrator: The orchestrator instance
message: The research question
Yields:
ChatMessage objects from orchestrator events
"""
# Track pending accordions for real-time updates
pending_accordions: dict[str, str] = {} # title -> accumulated content
async for event in orchestrator.run(message):
# Convert event to ChatMessage with metadata
chat_msg = event_to_chat_message(event)
# Handle complete events (main response)
if event.type == "complete":
# Close any pending accordions first
if pending_accordions:
for title, content in pending_accordions.items():
yield {
"role": "assistant",
"content": content.strip(),
"metadata": {"title": title, "status": "done"},
}
pending_accordions.clear()
# Yield final response (no accordion for main response)
# chat_msg is already a dict from event_to_chat_message
yield chat_msg
continue
# Handle events with metadata (accordions)
# chat_msg is always a dict from event_to_chat_message
metadata: dict[str, Any] = chat_msg.get("metadata", {})
if metadata:
msg_title: str | None = metadata.get("title")
msg_status: str | None = metadata.get("status")
if msg_title:
# For pending operations, accumulate content and show spinner
if msg_status == "pending":
if msg_title not in pending_accordions:
pending_accordions[msg_title] = ""
# chat_msg is always a dict, so access content via key
content = chat_msg.get("content", "")
pending_accordions[msg_title] += content + "\n"
# Yield updated accordion with accumulated content
yield {
"role": "assistant",
"content": pending_accordions[msg_title].strip(),
"metadata": chat_msg.get("metadata", {}),
}
elif msg_title in pending_accordions:
# Combine pending content with final content
# chat_msg is always a dict, so access content via key
content = chat_msg.get("content", "")
final_content = pending_accordions[msg_title] + content
del pending_accordions[msg_title]
yield {
"role": "assistant",
"content": final_content.strip(),
"metadata": {"title": msg_title, "status": "done"},
}
else:
# New done accordion (no pending state)
yield chat_msg
else:
# No title, yield as-is
yield chat_msg
else:
# No metadata, yield as plain message
yield chat_msg
async def research_agent(
message: str,
history: list[dict[str, Any]],
mode: str = "simple",
hf_model: str | None = None,
hf_provider: str | None = None,
request: gr.Request | None = None,
) -> AsyncGenerator[dict[str, Any] | list[dict[str, Any]], None]:
"""
Gradio chat function that runs the research agent.
Args:
message: User's research question
history: Chat history (Gradio format)
mode: Orchestrator mode ("simple" or "advanced")
hf_model: Selected HuggingFace model ID (from dropdown)
hf_provider: Selected inference provider (from dropdown)
request: Gradio request object containing OAuth information
Yields:
ChatMessage objects with metadata for accordion display
"""
if not message.strip():
yield {
"role": "assistant",
"content": "Please enter a research question.",
}
return
# Extract OAuth token from request if available
oauth_token, oauth_username = extract_oauth_info(request)
# Check available keys
has_huggingface = bool(os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY") or oauth_token)
# Adjust mode if needed
effective_mode = mode
if mode == "advanced":
effective_mode = "simple"
# Yield authentication and mode status messages
async for msg in yield_auth_messages(oauth_username, oauth_token, has_huggingface, mode):
yield msg
# Run the agent and stream events
try:
# use_mock=False - let configure_orchestrator decide based on available keys
# It will use: OAuth token > Env vars > HF Inference (free tier)
# hf_model and hf_provider come from dropdown, so they're guaranteed to be valid
orchestrator, backend_name = configure_orchestrator(
use_mock=False, # Never use mock in production - HF Inference is the free fallback
mode=effective_mode,
oauth_token=oauth_token,
hf_model=hf_model, # Can be None, will use defaults in configure_orchestrator
hf_provider=hf_provider, # Can be None, will use defaults in configure_orchestrator
)
yield {
"role": "assistant",
"content": f"🧠 **Backend**: {backend_name}\n\n",
}
# Handle orchestrator events
async for msg in handle_orchestrator_events(orchestrator, message):
yield msg
except Exception as e:
# Return error message without metadata to avoid issues during example caching
# Metadata can cause validation errors when Gradio caches examples
yield {
"role": "assistant",
"content": f"❌ **Error**: {e!s}\n\n*Please check your configuration and try again.*",
}
def create_demo() -> gr.Blocks:
"""
Create the Gradio demo interface with MCP support and OAuth login.
Returns:
Configured Gradio Blocks interface with MCP server and OAuth enabled
"""
with gr.Blocks(title="🧬 DeepCritical") as demo:
# Add login button at the top
with gr.Row():
gr.LoginButton()
# Get initial model/provider lists (no auth by default)
# Check if user has auth to determine which model list to use
has_auth = bool(os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY"))
# Get the appropriate model list based on user's actual auth status
# CRITICAL: Use the list that matches the user's auth status to avoid mismatches
if has_auth:
# User has auth - get models available with auth (includes gated models)
initial_models = get_available_models(has_auth=True)
# Fallback to unauthenticated models if auth list is empty (shouldn't happen, but be safe)
if not initial_models:
initial_models = get_available_models(has_auth=False)
else:
# User doesn't have auth - only get unauthenticated models (ungated only)
initial_models = get_available_models(has_auth=False)
# Extract available model IDs (first element of tuples) - this is what Gradio uses as values
available_model_ids = [m[0] for m in initial_models] if initial_models else []
# Prefer latest reasoning models if available, otherwise use fallback
preferred_models = [
"Qwen/Qwen3-Next-80B-A3B-Thinking",
"Qwen/Qwen3-Next-80B-A3B-Instruct",
"meta-llama/Llama-3.3-70B-Instruct",
]
# Find first available preferred model from the actual available models list
# CRITICAL: Only use models that are actually in available_model_ids
initial_model_id = None
for preferred in preferred_models:
if preferred in available_model_ids:
initial_model_id = preferred
break
# Fall back to first available model from the actual list
# CRITICAL: Always use a model that's guaranteed to be in available_model_ids
if not initial_model_id:
if available_model_ids:
initial_model_id = available_model_ids[0] # First model ID from available list
else:
# No models available - this shouldn't happen, but handle gracefully
initial_model_id = None
# Final safety check: ensure initial_model_id is actually in the available models
# This is the last line of defense - if it's not in the list, use the first available
if initial_model_id and initial_model_id not in available_model_ids:
if available_model_ids:
initial_model_id = available_model_ids[0]
else:
initial_model_id = None
# Get providers for the selected model (only if we have a valid model)
# CRITICAL: Re-validate model_id is still in available models before getting providers
initial_providers = []
initial_provider = None
if initial_model_id and initial_model_id in available_model_ids:
initial_providers = get_available_providers(initial_model_id, has_auth=has_auth)
# Ensure we have a valid provider value that's in the choices
if initial_providers:
available_provider_ids = [p[0] for p in initial_providers]
if available_provider_ids:
initial_provider = available_provider_ids[0] # Use first provider's ID
else:
initial_provider = None
else:
initial_provider = None
else:
# Model not available - reset to None
initial_model_id = None
initial_provider = None
# Create dropdowns for model and provider selection
# Note: Components can be in a hidden row and still work with ChatInterface additional_inputs
# The visible=False just hides the row itself, but components are still accessible
with gr.Row(visible=False):
mode_radio = gr.Radio(
choices=["simple", "advanced"],
value="simple",
label="Orchestrator Mode",
info="Simple: Linear | Advanced: Multi-Agent (Requires OpenAI)",
)
# Final validation: ensure value is in choices before creating dropdown
# Gradio requires the value to be exactly one of the choice values (first element of tuples)
# CRITICAL: Always default to the first available choice to ensure value is always valid
# Extract model IDs from choices (first element of each tuple) - do this fresh right before creating dropdown
model_ids_in_choices = [m[0] for m in initial_models] if initial_models else []
# Determine the model value - must be in model_ids_in_choices
# CRITICAL: Only use values that are actually in the current choices list
model_value = None
if initial_models and model_ids_in_choices:
# First try to use initial_model_id if it's valid and in the current choices
if initial_model_id and initial_model_id in model_ids_in_choices:
model_value = initial_model_id
else:
# Fallback to first available model - guarantees a valid value
model_value = model_ids_in_choices[0]
# Absolute final check: if we have choices but model_value is None or invalid, use first choice
# This is the last line of defense - ensure value is ALWAYS valid
if initial_models and model_ids_in_choices:
if not model_value or model_value not in model_ids_in_choices:
model_value = model_ids_in_choices[0]
elif not initial_models:
# No models available - set to None (empty dropdown)
model_value = None
# CRITICAL: Only set value if it's actually in the choices list
# This prevents Gradio warnings about invalid values
final_model_value = None
if model_value and initial_models:
# Double-check the value is in the choices (defensive programming)
if model_value in model_ids_in_choices:
final_model_value = model_value
elif model_ids_in_choices:
# If value is invalid, use first available
final_model_value = model_ids_in_choices[0]
hf_model_dropdown = gr.Dropdown(
choices=initial_models if initial_models else [],
value=final_model_value, # Only set if validated to be in choices
label="πŸ€– Reasoning Model",
info="Select AI model for evidence assessment. Sign in to access gated models.",
interactive=True,
allow_custom_value=False, # Only allow values from choices
)
# Final validation for provider: ensure value is in choices
# CRITICAL: Always default to the first available choice to ensure value is always valid
# Extract provider IDs fresh right before creating dropdown
provider_ids_in_choices = [p[0] for p in initial_providers] if initial_providers else []
provider_value = None
# CRITICAL: Only use values that are actually in the current choices list
if initial_providers and provider_ids_in_choices:
# First try to use the preferred provider if it's available and in current choices
if initial_provider and initial_provider in provider_ids_in_choices:
provider_value = initial_provider
else:
# Fallback to first available provider - this ensures we always have a valid value
provider_value = provider_ids_in_choices[0]
# Absolute final check: if we have choices but provider_value is None or invalid, use first choice
# This is the last line of defense - ensure value is ALWAYS valid
if initial_providers and provider_ids_in_choices:
if not provider_value or provider_value not in provider_ids_in_choices:
provider_value = provider_ids_in_choices[0]
elif not initial_providers:
# No providers available - set to None (empty dropdown)
provider_value = None
# CRITICAL: Only set value if it's actually in the choices list
# This prevents Gradio warnings about invalid values
final_provider_value = None
if provider_value and initial_providers:
# Double-check the value is in the choices (defensive programming)
if provider_value in provider_ids_in_choices:
final_provider_value = provider_value
elif provider_ids_in_choices:
# If value is invalid, use first available
final_provider_value = provider_ids_in_choices[0]
hf_provider_dropdown = gr.Dropdown(
choices=initial_providers if initial_providers else [],
value=final_provider_value, # Only set if validated to be in choices
label="⚑ Inference Provider",
info="Select provider for model execution. Some require authentication.",
interactive=True,
allow_custom_value=False, # Only allow values from choices
)
# Update providers when model changes
def update_providers(model_id: str, request: gr.Request | None = None) -> gr.Dropdown:
"""Update provider list when model changes."""
# Check if user is authenticated
oauth_token, _ = extract_oauth_info(request)
has_auth = bool(
oauth_token or os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
)
providers = get_available_providers(model_id, has_auth=has_auth)
if providers:
# Always set value to first provider to ensure it's valid
return gr.Dropdown(choices=providers, value=providers[0][0])
# If no providers, return empty dropdown with no value
return gr.Dropdown(choices=[], value=None)
hf_model_dropdown.change(
fn=update_providers,
inputs=[hf_model_dropdown],
outputs=[hf_provider_dropdown],
)
# Chat interface with model/provider selection
gr.ChatInterface(
fn=research_agent,
title="🧬 DeepCritical",
description=(
"*AI-Powered Drug Repurposing Agent β€” searches PubMed, "
"ClinicalTrials.gov & Europe PMC*\n\n"
"---\n"
"*Research tool only β€” not for medical advice.* \n"
"**MCP Server Active**: Connect Claude Desktop to `/gradio_api/mcp/`\n\n"
"**Sign in with HuggingFace** above to access premium models and providers."
),
examples=[
# When additional_inputs are provided, examples must be lists of lists
# Each inner list: [message, mode, hf_model, hf_provider]
[
"What drugs could be repurposed for Alzheimer's disease?",
"simple",
None,
None,
],
["Is metformin effective for treating cancer?", "simple", None, None],
[
"What medications show promise for Long COVID treatment?",
"simple",
None,
None,
],
],
additional_inputs_accordion=gr.Accordion(label="βš™οΈ Settings", open=False),
additional_inputs=[
mode_radio,
hf_model_dropdown,
hf_provider_dropdown,
],
)
return demo # type: ignore[no-any-return]
def main() -> None:
"""Run the Gradio app with MCP server enabled."""
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
mcp_server=True,
ssr_mode=False, # Fix for intermittent loading/hydration issues in HF Spaces
)
if __name__ == "__main__":
main()