Spaces:
Running
Running
Merge pull request #13 from The-Obstacle-Is-The-Way/dev
Browse filesfeat(examples): Phase 6-8 demos for full stack demonstration
- examples/README.md +168 -13
- examples/embeddings_demo/run_embeddings.py +210 -0
- examples/full_stack_demo/run_full.py +235 -0
- examples/hypothesis_demo/run_hypothesis.py +139 -0
- examples/orchestrator_demo/run_agent.py +63 -33
- src/prompts/report.py +26 -0
examples/README.md
CHANGED
|
@@ -1,28 +1,183 @@
|
|
| 1 |
-
# Examples
|
| 2 |
|
| 3 |
-
|
| 4 |
|
| 5 |
-
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
```bash
|
| 10 |
uv run python examples/search_demo/run_search.py "metformin cancer"
|
| 11 |
```
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
-
**Option A: Mock Mode (No Keys)**
|
| 18 |
-
Test the logic/mechanics without an LLM.
|
| 19 |
```bash
|
| 20 |
-
uv run python examples/
|
| 21 |
```
|
| 22 |
|
| 23 |
-
**
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
```bash
|
| 27 |
uv run python examples/orchestrator_demo/run_agent.py "metformin cancer"
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DeepCritical Examples
|
| 2 |
|
| 3 |
+
**NO MOCKS. NO FAKE DATA. REAL SCIENCE.**
|
| 4 |
|
| 5 |
+
These demos run the REAL drug repurposing research pipeline with actual API calls.
|
| 6 |
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## Prerequisites
|
| 10 |
+
|
| 11 |
+
You MUST have API keys configured:
|
| 12 |
+
|
| 13 |
+
```bash
|
| 14 |
+
# Copy the example and add your keys
|
| 15 |
+
cp .env.example .env
|
| 16 |
+
|
| 17 |
+
# Required (pick one):
|
| 18 |
+
OPENAI_API_KEY=sk-...
|
| 19 |
+
ANTHROPIC_API_KEY=sk-ant-...
|
| 20 |
+
|
| 21 |
+
# Optional (higher PubMed rate limits):
|
| 22 |
+
NCBI_API_KEY=your-key
|
| 23 |
+
```
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
## Examples
|
| 28 |
+
|
| 29 |
+
### 1. Search Demo (No LLM Required)
|
| 30 |
+
|
| 31 |
+
Demonstrates REAL parallel search across PubMed and Web.
|
| 32 |
|
| 33 |
```bash
|
| 34 |
uv run python examples/search_demo/run_search.py "metformin cancer"
|
| 35 |
```
|
| 36 |
|
| 37 |
+
**What's REAL:**
|
| 38 |
+
- Actual NCBI E-utilities API calls
|
| 39 |
+
- Actual DuckDuckGo web searches
|
| 40 |
+
- Real papers, real URLs, real content
|
| 41 |
|
| 42 |
+
---
|
| 43 |
+
|
| 44 |
+
### 2. Embeddings Demo (No LLM Required)
|
| 45 |
+
|
| 46 |
+
Demonstrates REAL semantic search and deduplication.
|
| 47 |
|
|
|
|
|
|
|
| 48 |
```bash
|
| 49 |
+
uv run python examples/embeddings_demo/run_embeddings.py
|
| 50 |
```
|
| 51 |
|
| 52 |
+
**What's REAL:**
|
| 53 |
+
- Actual sentence-transformers model (all-MiniLM-L6-v2)
|
| 54 |
+
- Actual ChromaDB vector storage
|
| 55 |
+
- Real cosine similarity computations
|
| 56 |
+
- Real semantic deduplication
|
| 57 |
+
|
| 58 |
+
---
|
| 59 |
+
|
| 60 |
+
### 3. Orchestrator Demo (LLM Required)
|
| 61 |
+
|
| 62 |
+
Demonstrates the REAL search-judge-synthesize loop.
|
| 63 |
+
|
| 64 |
```bash
|
| 65 |
uv run python examples/orchestrator_demo/run_agent.py "metformin cancer"
|
| 66 |
+
uv run python examples/orchestrator_demo/run_agent.py "aspirin alzheimer" --iterations 5
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
**What's REAL:**
|
| 70 |
+
- Real PubMed + Web searches
|
| 71 |
+
- Real LLM judge evaluating evidence quality
|
| 72 |
+
- Real iterative refinement based on LLM decisions
|
| 73 |
+
- Real research synthesis
|
| 74 |
+
|
| 75 |
+
---
|
| 76 |
+
|
| 77 |
+
### 4. Magentic Demo (OpenAI Required)
|
| 78 |
+
|
| 79 |
+
Demonstrates REAL multi-agent coordination using Microsoft Agent Framework.
|
| 80 |
+
|
| 81 |
+
```bash
|
| 82 |
+
# Requires OPENAI_API_KEY specifically
|
| 83 |
+
uv run python examples/orchestrator_demo/run_magentic.py "metformin cancer"
|
| 84 |
+
```
|
| 85 |
+
|
| 86 |
+
**What's REAL:**
|
| 87 |
+
- Real MagenticBuilder orchestration
|
| 88 |
+
- Real SearchAgent, JudgeAgent, HypothesisAgent, ReportAgent
|
| 89 |
+
- Real manager-based coordination
|
| 90 |
+
|
| 91 |
+
---
|
| 92 |
+
|
| 93 |
+
### 5. Hypothesis Demo (LLM Required)
|
| 94 |
+
|
| 95 |
+
Demonstrates REAL mechanistic hypothesis generation.
|
| 96 |
+
|
| 97 |
+
```bash
|
| 98 |
+
uv run python examples/hypothesis_demo/run_hypothesis.py "metformin Alzheimer's"
|
| 99 |
+
uv run python examples/hypothesis_demo/run_hypothesis.py "sildenafil heart failure"
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
**What's REAL:**
|
| 103 |
+
- Real PubMed + Web search first
|
| 104 |
+
- Real embedding-based deduplication
|
| 105 |
+
- Real LLM generating Drug -> Target -> Pathway -> Effect chains
|
| 106 |
+
- Real knowledge gap identification
|
| 107 |
+
|
| 108 |
+
---
|
| 109 |
+
|
| 110 |
+
### 6. Full-Stack Demo (LLM Required)
|
| 111 |
+
|
| 112 |
+
**THE COMPLETE PIPELINE** - All phases working together.
|
| 113 |
+
|
| 114 |
+
```bash
|
| 115 |
+
uv run python examples/full_stack_demo/run_full.py "metformin Alzheimer's"
|
| 116 |
+
uv run python examples/full_stack_demo/run_full.py "sildenafil heart failure" -i 3
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
**What's REAL:**
|
| 120 |
+
1. Real PubMed + Web evidence collection
|
| 121 |
+
2. Real embedding-based semantic deduplication
|
| 122 |
+
3. Real LLM mechanistic hypothesis generation
|
| 123 |
+
4. Real LLM evidence quality assessment
|
| 124 |
+
5. Real LLM structured scientific report generation
|
| 125 |
+
|
| 126 |
+
Output: Publication-quality research report with validated citations.
|
| 127 |
+
|
| 128 |
+
---
|
| 129 |
+
|
| 130 |
+
## API Key Requirements
|
| 131 |
+
|
| 132 |
+
| Example | LLM Required | Keys |
|
| 133 |
+
|---------|--------------|------|
|
| 134 |
+
| search_demo | No | Optional: `NCBI_API_KEY` |
|
| 135 |
+
| embeddings_demo | No | None |
|
| 136 |
+
| orchestrator_demo | Yes | `OPENAI_API_KEY` or `ANTHROPIC_API_KEY` |
|
| 137 |
+
| run_magentic | Yes | `OPENAI_API_KEY` (Magentic requires OpenAI) |
|
| 138 |
+
| hypothesis_demo | Yes | `OPENAI_API_KEY` or `ANTHROPIC_API_KEY` |
|
| 139 |
+
| full_stack_demo | Yes | `OPENAI_API_KEY` or `ANTHROPIC_API_KEY` |
|
| 140 |
+
|
| 141 |
+
---
|
| 142 |
+
|
| 143 |
+
## Architecture
|
| 144 |
+
|
| 145 |
+
```text
|
| 146 |
+
User Query
|
| 147 |
+
|
|
| 148 |
+
v
|
| 149 |
+
[REAL Search] --> Actual PubMed + Web API calls
|
| 150 |
+
|
|
| 151 |
+
v
|
| 152 |
+
[REAL Embeddings] --> Actual sentence-transformers
|
| 153 |
+
|
|
| 154 |
+
v
|
| 155 |
+
[REAL Hypothesis] --> Actual LLM reasoning
|
| 156 |
+
|
|
| 157 |
+
v
|
| 158 |
+
[REAL Judge] --> Actual LLM assessment
|
| 159 |
+
|
|
| 160 |
+
+---> Need more? --> Loop back to Search
|
| 161 |
+
|
|
| 162 |
+
+---> Sufficient --> Continue
|
| 163 |
+
|
|
| 164 |
+
v
|
| 165 |
+
[REAL Report] --> Actual LLM synthesis
|
| 166 |
+
|
|
| 167 |
+
v
|
| 168 |
+
Publication-Quality Research Report
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
---
|
| 172 |
+
|
| 173 |
+
## Why No Mocks?
|
| 174 |
+
|
| 175 |
+
> "Authenticity is the feature."
|
| 176 |
+
|
| 177 |
+
Mocks belong in `tests/unit/`, not in demos. When you run these examples, you see:
|
| 178 |
+
- Real papers from real databases
|
| 179 |
+
- Real AI reasoning about real evidence
|
| 180 |
+
- Real scientific hypotheses
|
| 181 |
+
- Real research reports
|
| 182 |
+
|
| 183 |
+
This is what DeepCritical actually does. No fake data. No canned responses.
|
examples/embeddings_demo/run_embeddings.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Demo: Semantic Search & Deduplication (Phase 6).
|
| 4 |
+
|
| 5 |
+
This script demonstrates embedding-based capabilities:
|
| 6 |
+
- Text embedding with sentence-transformers
|
| 7 |
+
- Semantic similarity search via ChromaDB
|
| 8 |
+
- Duplicate detection by meaning (not just URL)
|
| 9 |
+
|
| 10 |
+
Usage:
|
| 11 |
+
uv run python examples/embeddings_demo/run_embeddings.py
|
| 12 |
+
|
| 13 |
+
No API keys required - uses local sentence-transformers model.
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
import asyncio
|
| 17 |
+
|
| 18 |
+
from src.services.embeddings import EmbeddingService
|
| 19 |
+
from src.utils.models import Citation, Evidence
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def create_sample_evidence() -> list[Evidence]:
|
| 23 |
+
"""Create sample evidence with some semantic duplicates."""
|
| 24 |
+
return [
|
| 25 |
+
Evidence(
|
| 26 |
+
content="Metformin activates AMPK which inhibits mTOR signaling pathway.",
|
| 27 |
+
citation=Citation(
|
| 28 |
+
source="pubmed",
|
| 29 |
+
title="Metformin and AMPK activation",
|
| 30 |
+
url="https://pubmed.ncbi.nlm.nih.gov/11111/",
|
| 31 |
+
date="2023",
|
| 32 |
+
authors=["Smith J"],
|
| 33 |
+
),
|
| 34 |
+
),
|
| 35 |
+
Evidence(
|
| 36 |
+
content="The drug metformin works by turning on AMPK, blocking the mTOR pathway.",
|
| 37 |
+
citation=Citation(
|
| 38 |
+
source="pubmed",
|
| 39 |
+
title="AMPK-mTOR axis in diabetes treatment",
|
| 40 |
+
url="https://pubmed.ncbi.nlm.nih.gov/22222/",
|
| 41 |
+
date="2022",
|
| 42 |
+
authors=["Jones A"],
|
| 43 |
+
),
|
| 44 |
+
),
|
| 45 |
+
Evidence(
|
| 46 |
+
content="Sildenafil increases nitric oxide signaling for vasodilation.",
|
| 47 |
+
citation=Citation(
|
| 48 |
+
source="web",
|
| 49 |
+
title="How Viagra Works",
|
| 50 |
+
url="https://example.com/viagra-mechanism",
|
| 51 |
+
date="2023",
|
| 52 |
+
authors=["WebMD"],
|
| 53 |
+
),
|
| 54 |
+
),
|
| 55 |
+
Evidence(
|
| 56 |
+
content="Clinical trials show metformin reduces cancer incidence in diabetic patients.",
|
| 57 |
+
citation=Citation(
|
| 58 |
+
source="pubmed",
|
| 59 |
+
title="Metformin and cancer prevention",
|
| 60 |
+
url="https://pubmed.ncbi.nlm.nih.gov/33333/",
|
| 61 |
+
date="2024",
|
| 62 |
+
authors=["Lee K", "Park S"],
|
| 63 |
+
),
|
| 64 |
+
),
|
| 65 |
+
Evidence(
|
| 66 |
+
content="Metformin inhibits mTOR through AMPK activation mechanism.",
|
| 67 |
+
citation=Citation(
|
| 68 |
+
source="pubmed",
|
| 69 |
+
title="mTOR inhibition by Metformin",
|
| 70 |
+
url="https://pubmed.ncbi.nlm.nih.gov/44444/",
|
| 71 |
+
date="2023",
|
| 72 |
+
authors=["Brown M"],
|
| 73 |
+
),
|
| 74 |
+
),
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def create_fresh_service(name_suffix: str = "") -> EmbeddingService:
|
| 79 |
+
"""Create a fresh embedding service with unique collection name."""
|
| 80 |
+
import uuid
|
| 81 |
+
|
| 82 |
+
# Create service with unique collection by modifying the internal collection
|
| 83 |
+
service = EmbeddingService.__new__(EmbeddingService)
|
| 84 |
+
service._model = __import__("sentence_transformers").SentenceTransformer("all-MiniLM-L6-v2")
|
| 85 |
+
service._client = __import__("chromadb").Client()
|
| 86 |
+
collection_name = f"demo_{name_suffix}_{uuid.uuid4().hex[:8]}"
|
| 87 |
+
service._collection = service._client.create_collection(
|
| 88 |
+
name=collection_name, metadata={"hnsw:space": "cosine"}
|
| 89 |
+
)
|
| 90 |
+
return service
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
async def demo_embedding() -> None:
|
| 94 |
+
"""Demo single text embedding."""
|
| 95 |
+
print("\n" + "=" * 60)
|
| 96 |
+
print("1. TEXT EMBEDDING DEMO")
|
| 97 |
+
print("=" * 60)
|
| 98 |
+
|
| 99 |
+
service = create_fresh_service("embed")
|
| 100 |
+
|
| 101 |
+
texts = [
|
| 102 |
+
"Metformin activates AMPK",
|
| 103 |
+
"Aspirin reduces inflammation",
|
| 104 |
+
"Metformin turns on the AMPK enzyme",
|
| 105 |
+
]
|
| 106 |
+
|
| 107 |
+
print("\nEmbedding sample texts...")
|
| 108 |
+
embeddings = await service.embed_batch(texts)
|
| 109 |
+
|
| 110 |
+
for text, emb in zip(texts, embeddings, strict=False):
|
| 111 |
+
print(f" '{text[:40]}...' -> [{emb[0]:.4f}, {emb[1]:.4f}, ... ] (dim={len(emb)})")
|
| 112 |
+
|
| 113 |
+
# Calculate similarity between text 0 and text 2 (semantically similar)
|
| 114 |
+
import numpy as np
|
| 115 |
+
|
| 116 |
+
sim_0_2 = np.dot(embeddings[0], embeddings[2]) / (
|
| 117 |
+
np.linalg.norm(embeddings[0]) * np.linalg.norm(embeddings[2])
|
| 118 |
+
)
|
| 119 |
+
sim_0_1 = np.dot(embeddings[0], embeddings[1]) / (
|
| 120 |
+
np.linalg.norm(embeddings[0]) * np.linalg.norm(embeddings[1])
|
| 121 |
+
)
|
| 122 |
+
|
| 123 |
+
print(f"\nSimilarity (Metformin AMPK) vs (Metformin turns on AMPK): {sim_0_2:.3f}")
|
| 124 |
+
print(f"Similarity (Metformin AMPK) vs (Aspirin inflammation): {sim_0_1:.3f}")
|
| 125 |
+
print(" -> Semantically similar texts have higher cosine similarity!")
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
async def demo_semantic_search() -> None:
|
| 129 |
+
"""Demo semantic similarity search."""
|
| 130 |
+
print("\n" + "=" * 60)
|
| 131 |
+
print("2. SEMANTIC SEARCH DEMO")
|
| 132 |
+
print("=" * 60)
|
| 133 |
+
|
| 134 |
+
service = create_fresh_service("search")
|
| 135 |
+
|
| 136 |
+
# Add some documents to the vector store
|
| 137 |
+
docs = [
|
| 138 |
+
("doc1", "Metformin activates AMPK enzyme in liver cells", {"source": "pubmed"}),
|
| 139 |
+
("doc2", "Aspirin inhibits COX-2 to reduce inflammation", {"source": "pubmed"}),
|
| 140 |
+
("doc3", "Statins lower cholesterol by inhibiting HMG-CoA reductase", {"source": "web"}),
|
| 141 |
+
("doc4", "AMPK activation leads to improved glucose metabolism", {"source": "pubmed"}),
|
| 142 |
+
("doc5", "Sildenafil works via nitric oxide pathway", {"source": "web"}),
|
| 143 |
+
]
|
| 144 |
+
|
| 145 |
+
print("\nIndexing documents...")
|
| 146 |
+
for doc_id, content, meta in docs:
|
| 147 |
+
await service.add_evidence(doc_id, content, meta)
|
| 148 |
+
print(f" Added: {doc_id}")
|
| 149 |
+
|
| 150 |
+
# Search for semantically related content
|
| 151 |
+
query = "drugs that activate AMPK"
|
| 152 |
+
print(f"\nSearching for: '{query}'")
|
| 153 |
+
|
| 154 |
+
results = await service.search_similar(query, n_results=3)
|
| 155 |
+
|
| 156 |
+
print("\nTop 3 results:")
|
| 157 |
+
for i, r in enumerate(results, 1):
|
| 158 |
+
# Lower distance = more similar (cosine distance: 0=identical, 2=opposite)
|
| 159 |
+
similarity = 1 - r["distance"]
|
| 160 |
+
print(f" {i}. [{similarity:.2%} similar] {r['content'][:60]}...")
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
async def demo_deduplication() -> None:
|
| 164 |
+
"""Demo semantic deduplication."""
|
| 165 |
+
print("\n" + "=" * 60)
|
| 166 |
+
print("3. SEMANTIC DEDUPLICATION DEMO")
|
| 167 |
+
print("=" * 60)
|
| 168 |
+
|
| 169 |
+
# Create fresh service for clean demo
|
| 170 |
+
service = create_fresh_service("dedup")
|
| 171 |
+
|
| 172 |
+
evidence = create_sample_evidence()
|
| 173 |
+
print(f"\nOriginal evidence count: {len(evidence)}")
|
| 174 |
+
for i, e in enumerate(evidence, 1):
|
| 175 |
+
print(f" {i}. {e.citation.title}")
|
| 176 |
+
|
| 177 |
+
print("\nRunning semantic deduplication (threshold=0.85)...")
|
| 178 |
+
unique = await service.deduplicate(evidence, threshold=0.85)
|
| 179 |
+
|
| 180 |
+
print(f"\nUnique evidence count: {len(unique)}")
|
| 181 |
+
print(f"Removed {len(evidence) - len(unique)} semantic duplicates\n")
|
| 182 |
+
|
| 183 |
+
for i, e in enumerate(unique, 1):
|
| 184 |
+
print(f" {i}. {e.citation.title}")
|
| 185 |
+
|
| 186 |
+
print("\n -> Notice: Papers about 'Metformin AMPK mTOR' were deduplicated!")
|
| 187 |
+
print(" Different titles, same semantic meaning = duplicate removed.")
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
async def main() -> None:
|
| 191 |
+
"""Run all embedding demos."""
|
| 192 |
+
print("\n" + "=" * 60)
|
| 193 |
+
print("DeepCritical Embeddings Demo (Phase 6)")
|
| 194 |
+
print("Using: sentence-transformers + ChromaDB")
|
| 195 |
+
print("=" * 60)
|
| 196 |
+
|
| 197 |
+
await demo_embedding()
|
| 198 |
+
await demo_semantic_search()
|
| 199 |
+
await demo_deduplication()
|
| 200 |
+
|
| 201 |
+
print("\n" + "=" * 60)
|
| 202 |
+
print("Demo complete! Embeddings enable:")
|
| 203 |
+
print(" - Finding papers by MEANING, not just keywords")
|
| 204 |
+
print(" - Removing duplicate findings automatically")
|
| 205 |
+
print(" - Building diverse evidence sets for research")
|
| 206 |
+
print("=" * 60 + "\n")
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
if __name__ == "__main__":
|
| 210 |
+
asyncio.run(main())
|
examples/full_stack_demo/run_full.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Demo: Full Stack DeepCritical Agent (Phases 1-8).
|
| 4 |
+
|
| 5 |
+
This script demonstrates the COMPLETE REAL drug repurposing research pipeline:
|
| 6 |
+
- Phase 2: REAL Search (PubMed + Web API calls)
|
| 7 |
+
- Phase 6: REAL Embeddings (sentence-transformers + ChromaDB)
|
| 8 |
+
- Phase 7: REAL Hypothesis (LLM mechanistic reasoning)
|
| 9 |
+
- Phase 3: REAL Judge (LLM evidence assessment)
|
| 10 |
+
- Phase 8: REAL Report (LLM structured scientific report)
|
| 11 |
+
|
| 12 |
+
NO MOCKS. NO FAKE DATA. REAL SCIENCE.
|
| 13 |
+
|
| 14 |
+
Usage:
|
| 15 |
+
uv run python examples/full_stack_demo/run_full.py "metformin Alzheimer's"
|
| 16 |
+
uv run python examples/full_stack_demo/run_full.py "sildenafil heart failure" -i 3
|
| 17 |
+
|
| 18 |
+
Requires: OPENAI_API_KEY or ANTHROPIC_API_KEY
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
import argparse
|
| 22 |
+
import asyncio
|
| 23 |
+
import os
|
| 24 |
+
import sys
|
| 25 |
+
from typing import Any
|
| 26 |
+
|
| 27 |
+
from src.utils.models import Evidence
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def print_header(title: str) -> None:
|
| 31 |
+
"""Print a formatted section header."""
|
| 32 |
+
print(f"\n{'='*70}")
|
| 33 |
+
print(f" {title}")
|
| 34 |
+
print(f"{'='*70}\n")
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def print_step(step: int, name: str) -> None:
|
| 38 |
+
"""Print a step indicator."""
|
| 39 |
+
print(f"\n[Step {step}] {name}")
|
| 40 |
+
print("-" * 50)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
_MAX_DISPLAY_LEN = 600
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def _print_truncated(text: str) -> None:
|
| 47 |
+
"""Print text, truncating if too long."""
|
| 48 |
+
if len(text) > _MAX_DISPLAY_LEN:
|
| 49 |
+
print(text[:_MAX_DISPLAY_LEN] + "\n... [truncated for display]")
|
| 50 |
+
else:
|
| 51 |
+
print(text)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
async def _run_search_iteration(
|
| 55 |
+
query: str,
|
| 56 |
+
iteration: int,
|
| 57 |
+
evidence_store: dict[str, Any],
|
| 58 |
+
all_evidence: list[Evidence],
|
| 59 |
+
search_handler: Any,
|
| 60 |
+
embedding_service: Any,
|
| 61 |
+
) -> list[Evidence]:
|
| 62 |
+
"""Run a single search iteration with deduplication."""
|
| 63 |
+
search_queries = [query]
|
| 64 |
+
if evidence_store.get("hypotheses"):
|
| 65 |
+
for h in evidence_store["hypotheses"][-2:]:
|
| 66 |
+
search_queries.extend(h.search_suggestions[:1])
|
| 67 |
+
|
| 68 |
+
for q in search_queries[:2]:
|
| 69 |
+
result = await search_handler.execute(q, max_results_per_tool=5)
|
| 70 |
+
print(f" '{q}' -> {result.total_found} results")
|
| 71 |
+
new_unique = await embedding_service.deduplicate(result.evidence)
|
| 72 |
+
print(f" After dedup: {len(new_unique)} unique")
|
| 73 |
+
all_evidence.extend(new_unique)
|
| 74 |
+
|
| 75 |
+
evidence_store["current"] = all_evidence
|
| 76 |
+
evidence_store["iteration_count"] = iteration
|
| 77 |
+
return all_evidence
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
async def _handle_judge_step(
|
| 81 |
+
judge_handler: Any, query: str, all_evidence: list[Evidence], evidence_store: dict[str, Any]
|
| 82 |
+
) -> tuple[bool, str]:
|
| 83 |
+
"""Handle the judge assessment step. Returns (should_stop, next_query)."""
|
| 84 |
+
print("\n[Judge] Assessing evidence quality (REAL LLM)...")
|
| 85 |
+
assessment = await judge_handler.assess(query, all_evidence)
|
| 86 |
+
print(f" Mechanism Score: {assessment.details.mechanism_score}/10")
|
| 87 |
+
print(f" Clinical Score: {assessment.details.clinical_evidence_score}/10")
|
| 88 |
+
print(f" Confidence: {assessment.confidence:.0%}")
|
| 89 |
+
print(f" Recommendation: {assessment.recommendation.upper()}")
|
| 90 |
+
|
| 91 |
+
if assessment.recommendation == "synthesize":
|
| 92 |
+
print("\n[Judge] Evidence sufficient! Proceeding to report generation...")
|
| 93 |
+
evidence_store["last_assessment"] = assessment.details.model_dump()
|
| 94 |
+
return True, query
|
| 95 |
+
|
| 96 |
+
next_queries = assessment.next_search_queries[:2] if assessment.next_search_queries else []
|
| 97 |
+
if next_queries:
|
| 98 |
+
print(f"\n[Judge] Need more evidence. Next queries: {next_queries}")
|
| 99 |
+
return False, next_queries[0]
|
| 100 |
+
|
| 101 |
+
print(
|
| 102 |
+
"\n[Judge] Need more evidence but no suggested queries. " "Continuing with original query."
|
| 103 |
+
)
|
| 104 |
+
return False, query
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
async def run_full_demo(query: str, max_iterations: int) -> None:
|
| 108 |
+
"""Run the REAL full stack pipeline."""
|
| 109 |
+
print_header("DeepCritical Full Stack Demo (REAL)")
|
| 110 |
+
print(f"Query: {query}")
|
| 111 |
+
print(f"Max iterations: {max_iterations}")
|
| 112 |
+
print("Mode: REAL (All live API calls - no mocks)\n")
|
| 113 |
+
|
| 114 |
+
# Import real components
|
| 115 |
+
from src.agent_factory.judges import JudgeHandler
|
| 116 |
+
from src.agents.hypothesis_agent import HypothesisAgent
|
| 117 |
+
from src.agents.report_agent import ReportAgent
|
| 118 |
+
from src.services.embeddings import EmbeddingService
|
| 119 |
+
from src.tools.pubmed import PubMedTool
|
| 120 |
+
from src.tools.search_handler import SearchHandler
|
| 121 |
+
from src.tools.websearch import WebTool
|
| 122 |
+
|
| 123 |
+
# Initialize REAL services
|
| 124 |
+
print("[Init] Loading embedding model...")
|
| 125 |
+
embedding_service = EmbeddingService()
|
| 126 |
+
search_handler = SearchHandler(tools=[PubMedTool(), WebTool()], timeout=30.0)
|
| 127 |
+
judge_handler = JudgeHandler()
|
| 128 |
+
|
| 129 |
+
# Shared evidence store
|
| 130 |
+
evidence_store: dict[str, Any] = {"current": [], "hypotheses": [], "iteration_count": 0}
|
| 131 |
+
all_evidence: list[Evidence] = []
|
| 132 |
+
|
| 133 |
+
for iteration in range(1, max_iterations + 1):
|
| 134 |
+
print_step(iteration, f"ITERATION {iteration}/{max_iterations}")
|
| 135 |
+
|
| 136 |
+
# Step 1: REAL Search
|
| 137 |
+
print("\n[Search] Querying PubMed and Web (REAL API calls)...")
|
| 138 |
+
all_evidence = await _run_search_iteration(
|
| 139 |
+
query, iteration, evidence_store, all_evidence, search_handler, embedding_service
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
if not all_evidence:
|
| 143 |
+
print("\nNo evidence found. Try a different query.")
|
| 144 |
+
return
|
| 145 |
+
|
| 146 |
+
# Step 2: REAL Hypothesis generation (first iteration only)
|
| 147 |
+
if iteration == 1:
|
| 148 |
+
print("\n[Hypothesis] Generating mechanistic hypotheses (REAL LLM)...")
|
| 149 |
+
hypothesis_agent = HypothesisAgent(evidence_store, embedding_service)
|
| 150 |
+
hyp_response = await hypothesis_agent.run(query)
|
| 151 |
+
_print_truncated(hyp_response.messages[0].text)
|
| 152 |
+
|
| 153 |
+
# Step 3: REAL Judge
|
| 154 |
+
should_stop, query = await _handle_judge_step(
|
| 155 |
+
judge_handler, query, all_evidence, evidence_store
|
| 156 |
+
)
|
| 157 |
+
if should_stop:
|
| 158 |
+
break
|
| 159 |
+
|
| 160 |
+
# Step 4: REAL Report generation
|
| 161 |
+
print_step(iteration + 1, "REPORT GENERATION (REAL LLM)")
|
| 162 |
+
report_agent = ReportAgent(evidence_store, embedding_service)
|
| 163 |
+
report_response = await report_agent.run(query)
|
| 164 |
+
|
| 165 |
+
print("\n" + "=" * 70)
|
| 166 |
+
print(" FINAL RESEARCH REPORT")
|
| 167 |
+
print("=" * 70)
|
| 168 |
+
print(report_response.messages[0].text)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
async def main() -> None:
|
| 172 |
+
"""Entry point."""
|
| 173 |
+
parser = argparse.ArgumentParser(
|
| 174 |
+
description="DeepCritical Full Stack Demo - REAL, No Mocks",
|
| 175 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 176 |
+
epilog="""
|
| 177 |
+
This demo runs the COMPLETE pipeline with REAL API calls:
|
| 178 |
+
1. REAL search: Actual PubMed + DuckDuckGo queries
|
| 179 |
+
2. REAL embeddings: Actual sentence-transformers model
|
| 180 |
+
3. REAL hypothesis: Actual LLM generating mechanistic chains
|
| 181 |
+
4. REAL judge: Actual LLM assessing evidence quality
|
| 182 |
+
5. REAL report: Actual LLM generating structured report
|
| 183 |
+
|
| 184 |
+
Examples:
|
| 185 |
+
uv run python examples/full_stack_demo/run_full.py "metformin Alzheimer's"
|
| 186 |
+
uv run python examples/full_stack_demo/run_full.py "sildenafil heart failure" -i 3
|
| 187 |
+
uv run python examples/full_stack_demo/run_full.py "aspirin cancer prevention"
|
| 188 |
+
""",
|
| 189 |
+
)
|
| 190 |
+
parser.add_argument(
|
| 191 |
+
"query",
|
| 192 |
+
help="Research query (e.g., 'metformin Alzheimer's disease')",
|
| 193 |
+
)
|
| 194 |
+
parser.add_argument(
|
| 195 |
+
"-i",
|
| 196 |
+
"--iterations",
|
| 197 |
+
type=int,
|
| 198 |
+
default=2,
|
| 199 |
+
help="Max search iterations (default: 2)",
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
args = parser.parse_args()
|
| 203 |
+
|
| 204 |
+
if args.iterations < 1:
|
| 205 |
+
print("Error: iterations must be at least 1")
|
| 206 |
+
sys.exit(1)
|
| 207 |
+
|
| 208 |
+
# Fail fast: require API key
|
| 209 |
+
if not (os.getenv("OPENAI_API_KEY") or os.getenv("ANTHROPIC_API_KEY")):
|
| 210 |
+
print("=" * 70)
|
| 211 |
+
print("ERROR: This demo requires a real LLM.")
|
| 212 |
+
print()
|
| 213 |
+
print("Set one of the following in your .env file:")
|
| 214 |
+
print(" OPENAI_API_KEY=sk-...")
|
| 215 |
+
print(" ANTHROPIC_API_KEY=sk-ant-...")
|
| 216 |
+
print()
|
| 217 |
+
print("This is a REAL demo. No mocks. No fake data.")
|
| 218 |
+
print("=" * 70)
|
| 219 |
+
sys.exit(1)
|
| 220 |
+
|
| 221 |
+
await run_full_demo(args.query, args.iterations)
|
| 222 |
+
|
| 223 |
+
print("\n" + "=" * 70)
|
| 224 |
+
print(" DeepCritical Full Stack Demo Complete!")
|
| 225 |
+
print(" ")
|
| 226 |
+
print(" Everything you just saw was REAL:")
|
| 227 |
+
print(" - Real PubMed/Web searches")
|
| 228 |
+
print(" - Real embedding computations")
|
| 229 |
+
print(" - Real LLM reasoning")
|
| 230 |
+
print(" - Real scientific report")
|
| 231 |
+
print("=" * 70 + "\n")
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
if __name__ == "__main__":
|
| 235 |
+
asyncio.run(main())
|
examples/hypothesis_demo/run_hypothesis.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Demo: Hypothesis Generation (Phase 7).
|
| 4 |
+
|
| 5 |
+
This script demonstrates the REAL hypothesis generation pipeline:
|
| 6 |
+
1. REAL search: PubMed + Web (actual API calls)
|
| 7 |
+
2. REAL embeddings: Semantic deduplication
|
| 8 |
+
3. REAL LLM: Mechanistic hypothesis generation
|
| 9 |
+
|
| 10 |
+
Usage:
|
| 11 |
+
# Requires OPENAI_API_KEY or ANTHROPIC_API_KEY
|
| 12 |
+
uv run python examples/hypothesis_demo/run_hypothesis.py "metformin Alzheimer's"
|
| 13 |
+
uv run python examples/hypothesis_demo/run_hypothesis.py "sildenafil heart failure"
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
import argparse
|
| 17 |
+
import asyncio
|
| 18 |
+
import os
|
| 19 |
+
import sys
|
| 20 |
+
from typing import Any
|
| 21 |
+
|
| 22 |
+
from src.agents.hypothesis_agent import HypothesisAgent
|
| 23 |
+
from src.services.embeddings import EmbeddingService
|
| 24 |
+
from src.tools.pubmed import PubMedTool
|
| 25 |
+
from src.tools.search_handler import SearchHandler
|
| 26 |
+
from src.tools.websearch import WebTool
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
async def run_hypothesis_demo(query: str) -> None:
|
| 30 |
+
"""Run the REAL hypothesis generation pipeline."""
|
| 31 |
+
try:
|
| 32 |
+
print(f"\n{'='*60}")
|
| 33 |
+
print("DeepCritical Hypothesis Agent Demo (Phase 7)")
|
| 34 |
+
print(f"Query: {query}")
|
| 35 |
+
print("Mode: REAL (Live API calls)")
|
| 36 |
+
print(f"{'='*60}\n")
|
| 37 |
+
|
| 38 |
+
# Step 1: REAL Search
|
| 39 |
+
print("[Step 1] Searching PubMed + Web...")
|
| 40 |
+
search_handler = SearchHandler(tools=[PubMedTool(), WebTool()], timeout=30.0)
|
| 41 |
+
result = await search_handler.execute(query, max_results_per_tool=5)
|
| 42 |
+
|
| 43 |
+
print(f" Found {result.total_found} results from {result.sources_searched}")
|
| 44 |
+
if result.errors:
|
| 45 |
+
print(f" Warnings: {result.errors}")
|
| 46 |
+
|
| 47 |
+
if not result.evidence:
|
| 48 |
+
print("\nNo evidence found. Try a different query.")
|
| 49 |
+
return
|
| 50 |
+
|
| 51 |
+
# Step 2: REAL Embeddings - Deduplicate
|
| 52 |
+
print("\n[Step 2] Semantic deduplication...")
|
| 53 |
+
embedding_service = EmbeddingService()
|
| 54 |
+
unique_evidence = await embedding_service.deduplicate(result.evidence, threshold=0.85)
|
| 55 |
+
print(f" {len(result.evidence)} -> {len(unique_evidence)} unique papers")
|
| 56 |
+
|
| 57 |
+
# Show what we found
|
| 58 |
+
print("\n[Evidence collected]")
|
| 59 |
+
max_title_len = 50
|
| 60 |
+
for i, e in enumerate(unique_evidence[:5], 1):
|
| 61 |
+
raw_title = e.citation.title
|
| 62 |
+
if len(raw_title) > max_title_len:
|
| 63 |
+
title = raw_title[:max_title_len] + "..."
|
| 64 |
+
else:
|
| 65 |
+
title = raw_title
|
| 66 |
+
print(f" {i}. [{e.citation.source.upper()}] {title}")
|
| 67 |
+
|
| 68 |
+
# Step 3: REAL LLM - Generate hypotheses
|
| 69 |
+
print("\n[Step 3] Generating mechanistic hypotheses (LLM)...")
|
| 70 |
+
evidence_store: dict[str, Any] = {"current": unique_evidence, "hypotheses": []}
|
| 71 |
+
agent = HypothesisAgent(evidence_store, embedding_service)
|
| 72 |
+
|
| 73 |
+
print("-" * 60)
|
| 74 |
+
response = await agent.run(query)
|
| 75 |
+
print(response.messages[0].text)
|
| 76 |
+
print("-" * 60)
|
| 77 |
+
|
| 78 |
+
# Show stored hypotheses
|
| 79 |
+
hypotheses = evidence_store.get("hypotheses", [])
|
| 80 |
+
print(f"\n{len(hypotheses)} hypotheses stored")
|
| 81 |
+
|
| 82 |
+
if hypotheses:
|
| 83 |
+
print("\nGenerated search queries for further investigation:")
|
| 84 |
+
for h in hypotheses:
|
| 85 |
+
queries = h.to_search_queries()
|
| 86 |
+
print(f" {h.drug} -> {h.target}:")
|
| 87 |
+
for q in queries[:3]:
|
| 88 |
+
print(f" - {q}")
|
| 89 |
+
|
| 90 |
+
except Exception as e:
|
| 91 |
+
print(f"\nβ Error during hypothesis generation: {e}")
|
| 92 |
+
raise
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
async def main() -> None:
|
| 96 |
+
"""Entry point."""
|
| 97 |
+
parser = argparse.ArgumentParser(
|
| 98 |
+
description="Hypothesis Generation Demo (REAL - No Mocks)",
|
| 99 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 100 |
+
epilog="""
|
| 101 |
+
Examples:
|
| 102 |
+
uv run python examples/hypothesis_demo/run_hypothesis.py "metformin Alzheimer's"
|
| 103 |
+
uv run python examples/hypothesis_demo/run_hypothesis.py "sildenafil heart failure"
|
| 104 |
+
uv run python examples/hypothesis_demo/run_hypothesis.py "aspirin cancer prevention"
|
| 105 |
+
""",
|
| 106 |
+
)
|
| 107 |
+
parser.add_argument(
|
| 108 |
+
"query",
|
| 109 |
+
nargs="?",
|
| 110 |
+
default="metformin Alzheimer's disease",
|
| 111 |
+
help="Research query",
|
| 112 |
+
)
|
| 113 |
+
args = parser.parse_args()
|
| 114 |
+
|
| 115 |
+
# Fail fast: require API key
|
| 116 |
+
if not (os.getenv("OPENAI_API_KEY") or os.getenv("ANTHROPIC_API_KEY")):
|
| 117 |
+
print("=" * 60)
|
| 118 |
+
print("ERROR: This demo requires a real LLM.")
|
| 119 |
+
print()
|
| 120 |
+
print("Set one of the following in your .env file:")
|
| 121 |
+
print(" OPENAI_API_KEY=sk-...")
|
| 122 |
+
print(" ANTHROPIC_API_KEY=sk-ant-...")
|
| 123 |
+
print()
|
| 124 |
+
print("This is a REAL demo, not a mock. No fake data.")
|
| 125 |
+
print("=" * 60)
|
| 126 |
+
sys.exit(1)
|
| 127 |
+
|
| 128 |
+
await run_hypothesis_demo(args.query)
|
| 129 |
+
|
| 130 |
+
print("\n" + "=" * 60)
|
| 131 |
+
print("Demo complete! This was a REAL pipeline:")
|
| 132 |
+
print(" 1. REAL search: Actual PubMed + Web API calls")
|
| 133 |
+
print(" 2. REAL embeddings: Actual sentence-transformers")
|
| 134 |
+
print(" 3. REAL LLM: Actual hypothesis generation")
|
| 135 |
+
print("=" * 60 + "\n")
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
if __name__ == "__main__":
|
| 139 |
+
asyncio.run(main())
|
examples/orchestrator_demo/run_agent.py
CHANGED
|
@@ -1,19 +1,20 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
Demo:
|
| 4 |
|
| 5 |
-
This script demonstrates Phase 4
|
| 6 |
-
- Iterative Search (PubMed + Web)
|
| 7 |
-
- Evidence Evaluation (Judge
|
| 8 |
-
- Orchestration Loop
|
| 9 |
-
- Final Synthesis
|
| 10 |
|
| 11 |
-
|
| 12 |
-
# Run with Mock Judge (No API Key needed)
|
| 13 |
-
uv run python examples/orchestrator_demo/run_agent.py "metformin cancer" --mock
|
| 14 |
|
| 15 |
-
|
| 16 |
uv run python examples/orchestrator_demo/run_agent.py "metformin cancer"
|
|
|
|
|
|
|
|
|
|
| 17 |
"""
|
| 18 |
|
| 19 |
import argparse
|
|
@@ -21,61 +22,90 @@ import asyncio
|
|
| 21 |
import os
|
| 22 |
import sys
|
| 23 |
|
| 24 |
-
from src.agent_factory.judges import JudgeHandler
|
| 25 |
from src.orchestrator import Orchestrator
|
| 26 |
from src.tools.pubmed import PubMedTool
|
| 27 |
from src.tools.search_handler import SearchHandler
|
| 28 |
from src.tools.websearch import WebTool
|
| 29 |
from src.utils.models import OrchestratorConfig
|
| 30 |
|
|
|
|
|
|
|
| 31 |
|
| 32 |
async def main() -> None:
|
| 33 |
-
"""Run the agent demo."""
|
| 34 |
-
parser = argparse.ArgumentParser(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
parser.add_argument("query", help="Research query (e.g., 'metformin cancer')")
|
| 36 |
-
parser.add_argument("--
|
| 37 |
-
parser.add_argument("--iterations", type=int, default=3, help="Max iterations")
|
| 38 |
args = parser.parse_args()
|
| 39 |
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
sys.exit(1)
|
| 44 |
|
| 45 |
print(f"\n{'='*60}")
|
| 46 |
-
print("DeepCritical Agent Demo")
|
| 47 |
print(f"Query: {args.query}")
|
| 48 |
-
print(f"
|
| 49 |
-
print(
|
|
|
|
| 50 |
|
| 51 |
-
#
|
| 52 |
search_handler = SearchHandler(tools=[PubMedTool(), WebTool()], timeout=30.0)
|
|
|
|
| 53 |
|
| 54 |
-
# 2. Setup Judge
|
| 55 |
-
judge_handler: JudgeHandler | MockJudgeHandler
|
| 56 |
-
if args.mock:
|
| 57 |
-
judge_handler = MockJudgeHandler()
|
| 58 |
-
else:
|
| 59 |
-
judge_handler = JudgeHandler()
|
| 60 |
-
|
| 61 |
-
# 3. Setup Orchestrator
|
| 62 |
config = OrchestratorConfig(max_iterations=args.iterations)
|
| 63 |
orchestrator = Orchestrator(
|
| 64 |
search_handler=search_handler, judge_handler=judge_handler, config=config
|
| 65 |
)
|
| 66 |
|
| 67 |
-
#
|
| 68 |
try:
|
| 69 |
async for event in orchestrator.run(args.query):
|
| 70 |
-
# Print event with icon
|
| 71 |
print(event.to_markdown().replace("**", ""))
|
| 72 |
|
| 73 |
-
#
|
| 74 |
if event.type == "search_complete" and event.data:
|
| 75 |
print(f" -> Found {event.data.get('new_count', 0)} new items")
|
| 76 |
|
| 77 |
except Exception as e:
|
| 78 |
print(f"\nβ Error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
|
| 81 |
if __name__ == "__main__":
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
Demo: DeepCritical Agent Loop (Search + Judge + Orchestrator).
|
| 4 |
|
| 5 |
+
This script demonstrates the REAL Phase 4 orchestration:
|
| 6 |
+
- REAL Iterative Search (PubMed + Web API calls)
|
| 7 |
+
- REAL Evidence Evaluation (LLM Judge)
|
| 8 |
+
- REAL Orchestration Loop
|
| 9 |
+
- REAL Final Synthesis
|
| 10 |
|
| 11 |
+
NO MOCKS. REAL API CALLS.
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
Usage:
|
| 14 |
uv run python examples/orchestrator_demo/run_agent.py "metformin cancer"
|
| 15 |
+
uv run python examples/orchestrator_demo/run_agent.py "sildenafil heart failure" --iterations 5
|
| 16 |
+
|
| 17 |
+
Requires: OPENAI_API_KEY or ANTHROPIC_API_KEY
|
| 18 |
"""
|
| 19 |
|
| 20 |
import argparse
|
|
|
|
| 22 |
import os
|
| 23 |
import sys
|
| 24 |
|
| 25 |
+
from src.agent_factory.judges import JudgeHandler
|
| 26 |
from src.orchestrator import Orchestrator
|
| 27 |
from src.tools.pubmed import PubMedTool
|
| 28 |
from src.tools.search_handler import SearchHandler
|
| 29 |
from src.tools.websearch import WebTool
|
| 30 |
from src.utils.models import OrchestratorConfig
|
| 31 |
|
| 32 |
+
MAX_ITERATIONS = 10
|
| 33 |
+
|
| 34 |
|
| 35 |
async def main() -> None:
|
| 36 |
+
"""Run the REAL agent demo."""
|
| 37 |
+
parser = argparse.ArgumentParser(
|
| 38 |
+
description="DeepCritical Agent Demo - REAL, No Mocks",
|
| 39 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 40 |
+
epilog="""
|
| 41 |
+
This demo runs the REAL search-judge-synthesize loop:
|
| 42 |
+
1. REAL search: Actual PubMed + DuckDuckGo queries
|
| 43 |
+
2. REAL judge: Actual LLM assessing evidence quality
|
| 44 |
+
3. REAL loop: Actual iterative refinement based on LLM decisions
|
| 45 |
+
4. REAL synthesis: Actual research summary generation
|
| 46 |
+
|
| 47 |
+
Examples:
|
| 48 |
+
uv run python examples/orchestrator_demo/run_agent.py "metformin cancer"
|
| 49 |
+
uv run python examples/orchestrator_demo/run_agent.py "aspirin alzheimer" --iterations 5
|
| 50 |
+
""",
|
| 51 |
+
)
|
| 52 |
parser.add_argument("query", help="Research query (e.g., 'metformin cancer')")
|
| 53 |
+
parser.add_argument("--iterations", type=int, default=3, help="Max iterations (default: 3)")
|
|
|
|
| 54 |
args = parser.parse_args()
|
| 55 |
|
| 56 |
+
if not 1 <= args.iterations <= MAX_ITERATIONS:
|
| 57 |
+
print(f"Error: iterations must be between 1 and {MAX_ITERATIONS}")
|
| 58 |
+
sys.exit(1)
|
| 59 |
+
|
| 60 |
+
# Fail fast: require API key
|
| 61 |
+
if not (os.getenv("OPENAI_API_KEY") or os.getenv("ANTHROPIC_API_KEY")):
|
| 62 |
+
print("=" * 60)
|
| 63 |
+
print("ERROR: This demo requires a real LLM.")
|
| 64 |
+
print()
|
| 65 |
+
print("Set one of the following in your .env file:")
|
| 66 |
+
print(" OPENAI_API_KEY=sk-...")
|
| 67 |
+
print(" ANTHROPIC_API_KEY=sk-ant-...")
|
| 68 |
+
print()
|
| 69 |
+
print("This is a REAL demo. No mocks. No fake data.")
|
| 70 |
+
print("=" * 60)
|
| 71 |
sys.exit(1)
|
| 72 |
|
| 73 |
print(f"\n{'='*60}")
|
| 74 |
+
print("DeepCritical Agent Demo (REAL)")
|
| 75 |
print(f"Query: {args.query}")
|
| 76 |
+
print(f"Max Iterations: {args.iterations}")
|
| 77 |
+
print("Mode: REAL (All live API calls)")
|
| 78 |
+
print(f"{'='*60}\n")
|
| 79 |
|
| 80 |
+
# Setup REAL components
|
| 81 |
search_handler = SearchHandler(tools=[PubMedTool(), WebTool()], timeout=30.0)
|
| 82 |
+
judge_handler = JudgeHandler() # REAL LLM judge
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
config = OrchestratorConfig(max_iterations=args.iterations)
|
| 85 |
orchestrator = Orchestrator(
|
| 86 |
search_handler=search_handler, judge_handler=judge_handler, config=config
|
| 87 |
)
|
| 88 |
|
| 89 |
+
# Run the REAL loop
|
| 90 |
try:
|
| 91 |
async for event in orchestrator.run(args.query):
|
| 92 |
+
# Print event with icon (remove markdown bold for CLI)
|
| 93 |
print(event.to_markdown().replace("**", ""))
|
| 94 |
|
| 95 |
+
# Show search results count
|
| 96 |
if event.type == "search_complete" and event.data:
|
| 97 |
print(f" -> Found {event.data.get('new_count', 0)} new items")
|
| 98 |
|
| 99 |
except Exception as e:
|
| 100 |
print(f"\nβ Error: {e}")
|
| 101 |
+
raise
|
| 102 |
+
|
| 103 |
+
print("\n" + "=" * 60)
|
| 104 |
+
print("Demo complete! Everything was REAL:")
|
| 105 |
+
print(" - Real PubMed/Web searches")
|
| 106 |
+
print(" - Real LLM judge decisions")
|
| 107 |
+
print(" - Real iterative refinement")
|
| 108 |
+
print("=" * 60 + "\n")
|
| 109 |
|
| 110 |
|
| 111 |
if __name__ == "__main__":
|
src/prompts/report.py
CHANGED
|
@@ -25,6 +25,32 @@ A good report:
|
|
| 25 |
|
| 26 |
Write in scientific but accessible language. Be specific about evidence strength.
|
| 27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 29 |
π¨ CRITICAL CITATION REQUIREMENTS π¨
|
| 30 |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
|
|
|
| 25 |
|
| 26 |
Write in scientific but accessible language. Be specific about evidence strength.
|
| 27 |
|
| 28 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 29 |
+
π¨ CRITICAL: REQUIRED JSON STRUCTURE π¨
|
| 30 |
+
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 31 |
+
|
| 32 |
+
The `hypotheses_tested` field MUST be a LIST of objects, each with these fields:
|
| 33 |
+
- "hypothesis": the hypothesis text
|
| 34 |
+
- "supported": count of supporting evidence (integer)
|
| 35 |
+
- "contradicted": count of contradicting evidence (integer)
|
| 36 |
+
|
| 37 |
+
Example:
|
| 38 |
+
hypotheses_tested: [
|
| 39 |
+
{"hypothesis": "Metformin -> AMPK -> reduced inflammation", "supported": 3, "contradicted": 1},
|
| 40 |
+
{"hypothesis": "Aspirin inhibits COX-2 pathway", "supported": 5, "contradicted": 0}
|
| 41 |
+
]
|
| 42 |
+
|
| 43 |
+
The `references` field MUST be a LIST of objects, each with these fields:
|
| 44 |
+
- "title": paper title (string)
|
| 45 |
+
- "authors": author names (string)
|
| 46 |
+
- "source": "pubmed" or "web" (string)
|
| 47 |
+
- "url": the EXACT URL from evidence (string)
|
| 48 |
+
|
| 49 |
+
Example:
|
| 50 |
+
references: [
|
| 51 |
+
{"title": "Metformin and Cancer", "authors": "Smith et al.", "source": "pubmed", "url": "https://pubmed.ncbi.nlm.nih.gov/12345678/"}
|
| 52 |
+
]
|
| 53 |
+
|
| 54 |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
| 55 |
π¨ CRITICAL CITATION REQUIREMENTS π¨
|
| 56 |
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|