VibecoderMcSwaggins commited on
Commit
c114650
·
1 Parent(s): f5b2917

feat: add MCP tool wrappers for biomedical search tools

Browse files

- Introduced a new module `mcp_tools.py` that provides asynchronous search functions for PubMed, ClinicalTrials.gov, and bioRxiv.
- Each function includes detailed Google-style docstrings and type hints, ensuring clarity and usability.
- Implemented a comprehensive search function that aggregates results from all sources, enhancing the search capabilities for biomedical literature.

Files added:
- src/mcp_tools.py

Files changed (1) hide show
  1. src/mcp_tools.py +156 -0
src/mcp_tools.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """MCP tool wrappers for DeepCritical search tools.
2
+
3
+ These functions expose our search tools via MCP protocol.
4
+ Each function follows the MCP tool contract:
5
+ - Full type hints
6
+ - Google-style docstrings with Args section
7
+ - Formatted string returns
8
+ """
9
+
10
+ from src.tools.biorxiv import BioRxivTool
11
+ from src.tools.clinicaltrials import ClinicalTrialsTool
12
+ from src.tools.pubmed import PubMedTool
13
+
14
+ # Singleton instances (avoid recreating on each call)
15
+ _pubmed = PubMedTool()
16
+ _trials = ClinicalTrialsTool()
17
+ _biorxiv = BioRxivTool()
18
+
19
+
20
+ async def search_pubmed(query: str, max_results: int = 10) -> str:
21
+ """Search PubMed for peer-reviewed biomedical literature.
22
+
23
+ Searches NCBI PubMed database for scientific papers matching your query.
24
+ Returns titles, authors, abstracts, and citation information.
25
+
26
+ Args:
27
+ query: Search query (e.g., "metformin alzheimer", "drug repurposing cancer")
28
+ max_results: Maximum results to return (1-50, default 10)
29
+
30
+ Returns:
31
+ Formatted search results with paper titles, authors, dates, and abstracts
32
+ """
33
+ max_results = max(1, min(50, max_results)) # Clamp to valid range
34
+
35
+ results = await _pubmed.search(query, max_results)
36
+
37
+ if not results:
38
+ return f"No PubMed results found for: {query}"
39
+
40
+ formatted = [f"## PubMed Results for: {query}\n"]
41
+ for i, evidence in enumerate(results, 1):
42
+ formatted.append(f"### {i}. {evidence.citation.title}")
43
+ formatted.append(f"**Authors**: {', '.join(evidence.citation.authors[:3])}")
44
+ formatted.append(f"**Date**: {evidence.citation.date}")
45
+ formatted.append(f"**URL**: {evidence.citation.url}")
46
+ formatted.append(f"\n{evidence.content}\n")
47
+
48
+ return "\n".join(formatted)
49
+
50
+
51
+ async def search_clinical_trials(query: str, max_results: int = 10) -> str:
52
+ """Search ClinicalTrials.gov for clinical trial data.
53
+
54
+ Searches the ClinicalTrials.gov database for trials matching your query.
55
+ Returns trial titles, phases, status, conditions, and interventions.
56
+
57
+ Args:
58
+ query: Search query (e.g., "metformin alzheimer", "diabetes phase 3")
59
+ max_results: Maximum results to return (1-50, default 10)
60
+
61
+ Returns:
62
+ Formatted clinical trial information with NCT IDs, phases, and status
63
+ """
64
+ max_results = max(1, min(50, max_results))
65
+
66
+ results = await _trials.search(query, max_results)
67
+
68
+ if not results:
69
+ return f"No clinical trials found for: {query}"
70
+
71
+ formatted = [f"## Clinical Trials for: {query}\n"]
72
+ for i, evidence in enumerate(results, 1):
73
+ formatted.append(f"### {i}. {evidence.citation.title}")
74
+ formatted.append(f"**URL**: {evidence.citation.url}")
75
+ formatted.append(f"**Date**: {evidence.citation.date}")
76
+ formatted.append(f"\n{evidence.content}\n")
77
+
78
+ return "\n".join(formatted)
79
+
80
+
81
+ async def search_biorxiv(query: str, max_results: int = 10) -> str:
82
+ """Search bioRxiv/medRxiv for preprint research.
83
+
84
+ Searches bioRxiv and medRxiv preprint servers for cutting-edge research.
85
+ Note: Preprints are NOT peer-reviewed but contain the latest findings.
86
+
87
+ Args:
88
+ query: Search query (e.g., "metformin neuroprotection", "long covid treatment")
89
+ max_results: Maximum results to return (1-50, default 10)
90
+
91
+ Returns:
92
+ Formatted preprint results with titles, authors, and abstracts
93
+ """
94
+ max_results = max(1, min(50, max_results))
95
+
96
+ results = await _biorxiv.search(query, max_results)
97
+
98
+ if not results:
99
+ return f"No bioRxiv/medRxiv preprints found for: {query}"
100
+
101
+ formatted = [f"## Preprint Results for: {query}\n"]
102
+ for i, evidence in enumerate(results, 1):
103
+ formatted.append(f"### {i}. {evidence.citation.title}")
104
+ formatted.append(f"**Authors**: {', '.join(evidence.citation.authors[:3])}")
105
+ formatted.append(f"**Date**: {evidence.citation.date}")
106
+ formatted.append(f"**URL**: {evidence.citation.url}")
107
+ formatted.append(f"\n{evidence.content}\n")
108
+
109
+ return "\n".join(formatted)
110
+
111
+
112
+ async def search_all_sources(query: str, max_per_source: int = 5) -> str:
113
+ """Search all biomedical sources simultaneously.
114
+
115
+ Performs parallel search across PubMed, ClinicalTrials.gov, and bioRxiv.
116
+ This is the most comprehensive search option for drug repurposing research.
117
+
118
+ Args:
119
+ query: Search query (e.g., "metformin alzheimer", "aspirin cancer prevention")
120
+ max_per_source: Maximum results per source (1-20, default 5)
121
+
122
+ Returns:
123
+ Combined results from all sources with source labels
124
+ """
125
+ import asyncio
126
+
127
+ max_per_source = max(1, min(20, max_per_source))
128
+
129
+ # Run all searches in parallel
130
+ pubmed_task = search_pubmed(query, max_per_source)
131
+ trials_task = search_clinical_trials(query, max_per_source)
132
+ biorxiv_task = search_biorxiv(query, max_per_source)
133
+
134
+ pubmed_results, trials_results, biorxiv_results = await asyncio.gather(
135
+ pubmed_task, trials_task, biorxiv_task, return_exceptions=True
136
+ )
137
+
138
+ formatted = [f"# Comprehensive Search: {query}\n"]
139
+
140
+ # Add each result section (handle exceptions gracefully)
141
+ if isinstance(pubmed_results, str):
142
+ formatted.append(pubmed_results)
143
+ else:
144
+ formatted.append(f"## PubMed\n*Error: {pubmed_results}*\n")
145
+
146
+ if isinstance(trials_results, str):
147
+ formatted.append(trials_results)
148
+ else:
149
+ formatted.append(f"## Clinical Trials\n*Error: {trials_results}*\n")
150
+
151
+ if isinstance(biorxiv_results, str):
152
+ formatted.append(biorxiv_results)
153
+ else:
154
+ formatted.append(f"## Preprints\n*Error: {biorxiv_results}*\n")
155
+
156
+ return "\n---\n".join(formatted)