# Dockerfile for DeepCritical FROM python:3.11-slim # Set working directory WORKDIR /app # Install system dependencies (curl needed for HEALTHCHECK) RUN apt-get update && apt-get install -y \ git \ curl \ && rm -rf /var/lib/apt/lists/* # Install uv RUN pip install uv==0.5.4 # Copy project files COPY pyproject.toml . COPY uv.lock . COPY src/ src/ COPY README.md . # Install runtime dependencies only (no dev/test tools) RUN uv sync --frozen --no-dev --extra embeddings --extra magentic # Create non-root user BEFORE downloading models RUN useradd --create-home --shell /bin/bash appuser # Set cache directory for HuggingFace models (must be writable by appuser) ENV HF_HOME=/app/.cache ENV TRANSFORMERS_CACHE=/app/.cache # Create cache dir with correct ownership RUN mkdir -p /app/.cache && chown -R appuser:appuser /app/.cache # Pre-download the embedding model during build (as appuser to set correct ownership) USER appuser RUN uv run python -c "from sentence_transformers import SentenceTransformer; SentenceTransformer('all-MiniLM-L6-v2')" # Expose port EXPOSE 7860 # Health check HEALTHCHECK --interval=30s --timeout=10s --start-period=5s --retries=3 \ CMD curl -f http://localhost:7860/ || exit 1 # Set environment variables ENV GRADIO_SERVER_NAME=0.0.0.0 ENV GRADIO_SERVER_PORT=7860 ENV PYTHONPATH=/app # Run the app CMD ["uv", "run", "python", "-m", "src.app"]