# CLAUDE.md This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository. ## Project Overview DeepCritical is an AI-native drug repurposing research agent for a HuggingFace hackathon. It uses a search-and-judge loop to autonomously search biomedical databases (PubMed, ClinicalTrials.gov, bioRxiv) and synthesize evidence for queries like "What existing drugs might help treat long COVID fatigue?". **Current Status:** Phases 1-13 COMPLETE (Foundation through Modal sandbox integration). ## Development Commands ```bash # Install all dependencies (including dev) make install # or: uv sync --all-extras && uv run pre-commit install # Run all quality checks (lint + typecheck + test) - MUST PASS BEFORE COMMIT make check # Individual commands make test # uv run pytest tests/unit/ -v make lint # uv run ruff check src tests make format # uv run ruff format src tests make typecheck # uv run mypy src make test-cov # uv run pytest --cov=src --cov-report=term-missing # Run single test uv run pytest tests/unit/utils/test_config.py::TestSettings::test_default_max_iterations -v # Integration tests (real APIs) uv run pytest -m integration ``` ## Architecture **Pattern**: Search-and-judge loop with multi-tool orchestration. ```text User Question → Orchestrator ↓ Search Loop: 1. Query PubMed, ClinicalTrials.gov, bioRxiv 2. Gather evidence 3. Judge quality ("Do we have enough?") 4. If NO → Refine query, search more 5. If YES → Synthesize findings (+ optional Modal analysis) ↓ Research Report with Citations ``` **Key Components**: - `src/orchestrator.py` - Main agent loop - `src/tools/pubmed.py` - PubMed E-utilities search - `src/tools/clinicaltrials.py` - ClinicalTrials.gov API - `src/tools/biorxiv.py` - bioRxiv/medRxiv preprint search - `src/tools/code_execution.py` - Modal sandbox execution - `src/tools/search_handler.py` - Scatter-gather orchestration - `src/services/embeddings.py` - Semantic search & deduplication (ChromaDB) - `src/services/statistical_analyzer.py` - Statistical analysis via Modal - `src/agent_factory/judges.py` - LLM-based evidence assessment - `src/agents/` - Magentic multi-agent mode (SearchAgent, JudgeAgent, etc.) - `src/mcp_tools.py` - MCP tool wrappers for Claude Desktop - `src/utils/config.py` - Pydantic Settings (loads from `.env`) - `src/utils/models.py` - Evidence, Citation, SearchResult models - `src/utils/exceptions.py` - Exception hierarchy - `src/app.py` - Gradio UI with MCP server (HuggingFace Spaces) **Break Conditions**: Judge approval, token budget (50K max), or max iterations (default 10). ## Configuration Settings via pydantic-settings from `.env`: - `LLM_PROVIDER`: "openai" or "anthropic" - `OPENAI_API_KEY` / `ANTHROPIC_API_KEY`: LLM keys - `NCBI_API_KEY`: Optional, for higher PubMed rate limits - `MODAL_TOKEN_ID` / `MODAL_TOKEN_SECRET`: For Modal sandbox (optional) - `MAX_ITERATIONS`: 1-50, default 10 - `LOG_LEVEL`: DEBUG, INFO, WARNING, ERROR ## Exception Hierarchy ```text DeepCriticalError (base) ├── SearchError │ └── RateLimitError ├── JudgeError └── ConfigurationError ``` ## Testing - **TDD**: Write tests first in `tests/unit/`, implement in `src/` - **Markers**: `unit`, `integration`, `slow` - **Mocking**: `respx` for httpx, `pytest-mock` for general mocking - **Fixtures**: `tests/conftest.py` has `mock_httpx_client`, `mock_llm_response` ## Git Workflow - `main`: Production-ready (GitHub) - `dev`: Development integration (GitHub) - Remote `origin`: GitHub (source of truth for PRs/code review) - Remote `huggingface-upstream`: HuggingFace Spaces (deployment target) **HuggingFace Spaces Collaboration:** - Each contributor should use their own dev branch: `yourname-dev` (e.g., `vcms-dev`, `mario-dev`) - **DO NOT push directly to `main` or `dev` on HuggingFace** - these can be overwritten easily - GitHub is the source of truth; HuggingFace is for deployment/demo - Consider using git hooks to prevent accidental pushes to protected branches