# Design Patterns & Technical Decisions ## Explicit Answers to Architecture Questions --- ## Purpose of This Document This document explicitly answers all the "design pattern" questions raised in team discussions. It provides clear technical decisions with rationale. --- ## 1. Primary Architecture Pattern ### Decision: Orchestrator with Search-Judge Loop **Pattern Name**: Iterative Research Orchestrator **Structure**: ``` ┌─────────────────────────────────────┐ │ Research Orchestrator │ │ ┌───────────────────────────────┐ │ │ │ Search Strategy Planner │ │ │ └───────────────────────────────┘ │ │ ↓ │ │ ┌───────────────────────────────┐ │ │ │ Tool Coordinator │ │ │ │ - PubMed Search │ │ │ │ - Web Search │ │ │ │ - Clinical Trials │ │ │ └───────────────────────────────┘ │ │ ↓ │ │ ┌───────────────────────────────┐ │ │ │ Evidence Aggregator │ │ │ └───────────────────────────────┘ │ │ ↓ │ │ ┌───────────────────────────────┐ │ │ │ Quality Judge │ │ │ │ (LLM-based assessment) │ │ │ └───────────────────────────────┘ │ │ ↓ │ │ Loop or Synthesize? │ │ ↓ │ │ ┌───────────────────────────────┐ │ │ │ Report Generator │ │ │ └───────────────────────────────┘ │ └─────────────────────────────────────┘ ``` **Why NOT single-agent?** - Need coordinated multi-tool queries - Need iterative refinement - Need quality assessment between searches **Why NOT pure ReAct?** - Medical research requires structured workflow - Need explicit quality gates - Want deterministic tool selection **Why THIS pattern?** - Clear separation of concerns - Testable components - Easy to debug - Proven in similar systems --- ## 2. Tool Selection & Orchestration Pattern ### Decision: Static Tool Registry with Dynamic Selection **Pattern**: ```python class ToolRegistry: """Central registry of available research tools""" tools = { 'pubmed': PubMedSearchTool(), 'web': WebSearchTool(), 'trials': ClinicalTrialsTool(), 'drugs': DrugInfoTool(), } class Orchestrator: def select_tools(self, question: str, iteration: int) -> List[Tool]: """Dynamically choose tools based on context""" if iteration == 0: # First pass: broad search return [tools['pubmed'], tools['web']] else: # Refinement: targeted search return self.judge.recommend_tools(question, context) ``` **Why NOT on-the-fly agent factories?** - 6-day timeline (too complex) - Tools are known upfront - Simpler to test and debug **Why NOT single tool?** - Need multiple evidence sources - Different tools for different info types - Better coverage **Why THIS pattern?** - Balance flexibility vs simplicity - Tools can be added easily - Selection logic is transparent --- ## 3. Judge Pattern ### Decision: Dual-Judge System (Quality + Budget) **Pattern**: ```python class QualityJudge: """LLM-based evidence quality assessment""" def is_sufficient(self, question: str, evidence: List[Evidence]) -> bool: """Main decision: do we have enough?""" return ( self.has_mechanism_explanation(evidence) and self.has_drug_candidates(evidence) and self.has_clinical_evidence(evidence) and self.confidence_score(evidence) > threshold ) def identify_gaps(self, question: str, evidence: List[Evidence]) -> List[str]: """What's missing?""" gaps = [] if not self.has_mechanism_explanation(evidence): gaps.append("disease mechanism") if not self.has_drug_candidates(evidence): gaps.append("potential drug candidates") if not self.has_clinical_evidence(evidence): gaps.append("clinical trial data") return gaps class BudgetJudge: """Resource constraint enforcement""" def should_stop(self, state: ResearchState) -> bool: """Hard limits""" return ( state.tokens_used >= max_tokens or state.iterations >= max_iterations or state.time_elapsed >= max_time ) ``` **Why NOT just LLM judge?** - Cost control (prevent runaway queries) - Time bounds (hackathon demo needs to be fast) - Safety (prevent infinite loops) **Why NOT just token budget?** - Want early exit when answer is good - Quality matters, not just quantity - Better user experience **Why THIS pattern?** - Best of both worlds - Clear separation (quality vs resources) - Each judge has single responsibility --- ## 4. Break/Stopping Pattern ### Decision: Three-Tier Break Conditions **Pattern**: ```python def should_continue(state: ResearchState) -> bool: """Multi-tier stopping logic""" # Tier 1: Quality-based (ideal stop) if quality_judge.is_sufficient(state.question, state.evidence): state.stop_reason = "sufficient_evidence" return False # Tier 2: Budget-based (cost control) if state.tokens_used >= config.max_tokens: state.stop_reason = "token_budget_exceeded" return False # Tier 3: Iteration-based (safety) if state.iterations >= config.max_iterations: state.stop_reason = "max_iterations_reached" return False # Tier 4: Time-based (demo friendly) if state.time_elapsed >= config.max_time: state.stop_reason = "timeout" return False return True # Continue researching ``` **Configuration**: ```toml [research.limits] max_tokens = 50000 # ~$0.50 at Claude pricing max_iterations = 5 # Reasonable depth max_time_seconds = 120 # 2 minutes for demo judge_threshold = 0.8 # Quality confidence score ``` **Why multiple conditions?** - Defense in depth - Different failure modes - Graceful degradation **Why these specific limits?** - Tokens: Balances cost vs quality - Iterations: Enough for refinement, not too deep - Time: Fast enough for live demo - Judge: High bar for quality --- ## 5. State Management Pattern ### Decision: Pydantic State Machine with Checkpoints **Pattern**: ```python class ResearchState(BaseModel): """Immutable state snapshots""" query_id: str question: str iteration: int = 0 evidence: List[Evidence] = [] tokens_used: int = 0 search_history: List[SearchQuery] = [] stop_reason: Optional[str] = None created_at: datetime updated_at: datetime class StateManager: def save_checkpoint(self, state: ResearchState) -> None: """Save state to disk""" path = f".deepresearch/checkpoints/{state.query_id}_iter{state.iteration}.json" path.write_text(state.model_dump_json(indent=2)) def load_checkpoint(self, query_id: str, iteration: int) -> ResearchState: """Resume from checkpoint""" path = f".deepresearch/checkpoints/{query_id}_iter{iteration}.json" return ResearchState.model_validate_json(path.read_text()) ``` **Directory Structure**: ``` .deepresearch/ ├── state/ │ └── current_123.json # Active research state ├── checkpoints/ │ ├── query_123_iter0.json # Checkpoint after iteration 0 │ ├── query_123_iter1.json # Checkpoint after iteration 1 │ └── query_123_iter2.json # Checkpoint after iteration 2 └── workspace/ └── query_123/ ├── papers/ # Downloaded PDFs ├── search_results/ # Raw search results └── analysis/ # Intermediate analysis ``` **Why Pydantic?** - Type safety - Validation - Easy serialization - Integration with Pydantic AI **Why checkpoints?** - Resume interrupted research - Debugging (inspect state at each iteration) - Cost savings (don't re-query) - Demo resilience --- ## 6. Tool Interface Pattern ### Decision: Async Unified Tool Protocol **Pattern**: ```python from typing import Protocol, Optional, List, Dict import asyncio class ResearchTool(Protocol): """Standard async interface all tools must implement""" async def search( self, query: str, max_results: int = 10, filters: Optional[Dict] = None ) -> List[Evidence]: """Execute search and return structured evidence""" ... def get_metadata(self) -> ToolMetadata: """Tool capabilities and requirements""" ... class PubMedSearchTool: """Concrete async implementation""" def __init__(self): self._rate_limiter = asyncio.Semaphore(3) # 3 req/sec self._cache: Dict[str, List[Evidence]] = {} async def search(self, query: str, max_results: int = 10, **kwargs) -> List[Evidence]: # Check cache first cache_key = f"{query}:{max_results}" if cache_key in self._cache: return self._cache[cache_key] async with self._rate_limiter: # 1. Query PubMed E-utilities API (async httpx) async with httpx.AsyncClient() as client: response = await client.get( "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi", params={"db": "pubmed", "term": query, "retmax": max_results} ) # 2. Parse XML response # 3. Extract: title, abstract, authors, citations # 4. Convert to Evidence objects evidence_list = self._parse_response(response.text) # Cache results self._cache[cache_key] = evidence_list return evidence_list def get_metadata(self) -> ToolMetadata: return ToolMetadata( name="PubMed", description="Biomedical literature search", rate_limit="3 requests/second", requires_api_key=False ) ``` **Parallel Tool Execution**: ```python async def search_all_tools(query: str, tools: List[ResearchTool]) -> List[Evidence]: """Run all tool searches in parallel""" tasks = [tool.search(query) for tool in tools] results = await asyncio.gather(*tasks, return_exceptions=True) # Flatten and filter errors evidence = [] for result in results: if isinstance(result, Exception): logger.warning(f"Tool failed: {result}") else: evidence.extend(result) return evidence ``` **Why Async?** - Tools are I/O bound (network calls) - Parallel execution = faster searches - Better UX (streaming progress) - Standard in 2025 Python **Why Protocol?** - Loose coupling - Easy to add new tools - Testable with mocks - Clear contract **Why NOT abstract base class?** - More Pythonic (PEP 544) - Duck typing friendly - Runtime checking with isinstance --- ## 7. Report Generation Pattern ### Decision: Structured Output with Citations **Pattern**: ```python class DrugCandidate(BaseModel): name: str mechanism: str evidence_quality: Literal["strong", "moderate", "weak"] clinical_status: str # "FDA approved", "Phase 2", etc. citations: List[Citation] class ResearchReport(BaseModel): query: str disease_mechanism: str candidates: List[DrugCandidate] methodology: str # How we searched confidence: float sources_used: List[str] generated_at: datetime def to_markdown(self) -> str: """Human-readable format""" ... def to_json(self) -> str: """Machine-readable format""" ... ``` **Output Example**: ```markdown # Research Report: Long COVID Fatigue ## Disease Mechanism Long COVID fatigue is associated with mitochondrial dysfunction and persistent inflammation [1, 2]. ## Drug Candidates ### 1. Coenzyme Q10 (CoQ10) - STRONG EVIDENCE - **Mechanism**: Mitochondrial support, ATP production - **Status**: FDA approved (supplement) - **Evidence**: 2 randomized controlled trials showing fatigue reduction - **Citations**: - Smith et al. (2023) - PubMed: 12345678 - Johnson et al. (2023) - PubMed: 87654321 ### 2. Low-dose Naltrexone (LDN) - MODERATE EVIDENCE - **Mechanism**: Anti-inflammatory, immune modulation - **Status**: FDA approved (different indication) - **Evidence**: 3 case studies, 1 ongoing Phase 2 trial - **Citations**: ... ## Methodology - Searched PubMed: 45 papers reviewed - Searched Web: 12 sources - Clinical trials: 8 trials identified - Total iterations: 3 - Tokens used: 12,450 ## Confidence: 85% ## Sources - PubMed E-utilities - ClinicalTrials.gov - OpenFDA Database ``` **Why structured?** - Parseable by other systems - Consistent format - Easy to validate - Good for datasets **Why markdown?** - Human-readable - Renders nicely in Gradio - Easy to convert to PDF - Standard format --- ## 8. Error Handling Pattern ### Decision: Graceful Degradation with Fallbacks **Pattern**: ```python class ResearchAgent: def research(self, question: str) -> ResearchReport: try: return self._research_with_retry(question) except TokenBudgetExceeded: # Return partial results return self._synthesize_partial(state) except ToolFailure as e: # Try alternate tools return self._research_with_fallback(question, failed_tool=e.tool) except Exception as e: # Log and return error report logger.error(f"Research failed: {e}") return self._error_report(question, error=e) ``` **Why NOT fail fast?** - Hackathon demo must be robust - Partial results better than nothing - Good user experience **Why NOT silent failures?** - Need visibility for debugging - User should know limitations - Honest about confidence --- ## 9. Configuration Pattern ### Decision: Hydra-inspired but Simpler **Pattern**: ```toml # config.toml [research] max_iterations = 5 max_tokens = 50000 max_time_seconds = 120 judge_threshold = 0.85 [tools] enabled = ["pubmed", "web", "trials"] [tools.pubmed] max_results = 20 rate_limit = 3 # per second [tools.web] engine = "serpapi" max_results = 10 [llm] provider = "anthropic" model = "claude-3-5-sonnet-20241022" temperature = 0.1 [output] format = "markdown" include_citations = true include_methodology = true ``` **Loading**: ```python from pathlib import Path import tomllib def load_config() -> dict: config_path = Path("config.toml") with open(config_path, "rb") as f: return tomllib.load(f) ``` **Why NOT full Hydra?** - Simpler for hackathon - Easier to understand - Faster to modify - Can upgrade later **Why TOML?** - Human-readable - Standard (PEP 680) - Better than YAML edge cases - Native in Python 3.11+ --- ## 10. Testing Pattern ### Decision: Three-Level Testing Strategy **Pattern**: ```python # Level 1: Unit tests (fast, isolated) def test_pubmed_tool(): tool = PubMedSearchTool() results = tool.search("aspirin cardiovascular") assert len(results) > 0 assert all(isinstance(r, Evidence) for r in results) # Level 2: Integration tests (tools + agent) def test_research_loop(): agent = ResearchAgent(config=test_config) report = agent.research("aspirin repurposing") assert report.candidates assert report.confidence > 0 # Level 3: End-to-end tests (full system) def test_full_workflow(): # Simulate user query through Gradio UI response = gradio_app.predict("test query") assert "Drug Candidates" in response ``` **Why three levels?** - Fast feedback (unit tests) - Confidence (integration tests) - Reality check (e2e tests) **Test Data**: ```python # tests/fixtures/ - mock_pubmed_response.xml - mock_web_results.json - sample_research_query.txt - expected_report.md ``` --- ## 11. Judge Prompt Templates ### Decision: Structured JSON Output with Domain-Specific Criteria **Quality Judge System Prompt**: ```python QUALITY_JUDGE_SYSTEM = """You are a medical research quality assessor specializing in drug repurposing. Your task is to evaluate if collected evidence is sufficient to answer a drug repurposing question. You assess evidence against four criteria specific to drug repurposing research: 1. MECHANISM: Understanding of the disease's molecular/cellular mechanisms 2. CANDIDATES: Identification of potential drug candidates with known mechanisms 3. EVIDENCE: Clinical or preclinical evidence supporting repurposing 4. SOURCES: Quality and credibility of sources (peer-reviewed > preprints > web) You MUST respond with valid JSON only. No other text.""" ``` **Quality Judge User Prompt**: ```python QUALITY_JUDGE_USER = """ ## Research Question {question} ## Evidence Collected (Iteration {iteration} of {max_iterations}) {evidence_summary} ## Token Budget Used: {tokens_used} / {max_tokens} ## Your Assessment Evaluate the evidence and respond with this exact JSON structure: ```json {{ "assessment": {{ "mechanism_score": <0-10>, "mechanism_reasoning": "", "candidates_score": <0-10>, "candidates_found": ["", "", ...], "evidence_score": <0-10>, "evidence_reasoning": "", "sources_score": <0-10>, "sources_breakdown": {{ "peer_reviewed": , "clinical_trials": , "preprints": , "other": }} }}, "overall_confidence": <0.0-1.0>, "sufficient": , "gaps": ["", ""], "recommended_searches": ["", ""], "recommendation": "" }} ``` Decision rules: - sufficient=true if overall_confidence >= 0.8 AND mechanism_score >= 6 AND candidates_score >= 6 - sufficient=true if remaining budget < 10% (must synthesize with what we have) - Otherwise, provide recommended_searches to fill gaps """ ``` **Report Synthesis Prompt**: ```python SYNTHESIS_PROMPT = """You are a medical research synthesizer creating a drug repurposing report. ## Research Question {question} ## Collected Evidence {all_evidence} ## Judge Assessment {final_assessment} ## Your Task Create a comprehensive research report with this structure: 1. **Executive Summary** (2-3 sentences) 2. **Disease Mechanism** - What we understand about the condition 3. **Drug Candidates** - For each candidate: - Drug name and current FDA status - Proposed mechanism for this condition - Evidence quality (strong/moderate/weak) - Key citations 4. **Methodology** - How we searched (tools used, queries, iterations) 5. **Limitations** - What we couldn't find or verify 6. **Confidence Score** - Overall confidence in findings Format as Markdown. Include PubMed IDs as citations [PMID: 12345678]. Be scientifically accurate. Do not hallucinate drug names or mechanisms. If evidence is weak, say so clearly.""" ``` **Why Structured JSON?** - Parseable by code (not just LLM output) - Consistent format for logging/debugging - Can trigger specific actions (continue vs synthesize) - Testable with expected outputs **Why Domain-Specific Criteria?** - Generic "is this good?" prompts fail - Drug repurposing has specific requirements - Physician on team validated criteria - Maps to real research workflow --- ## 12. MCP Server Integration (Hackathon Track) ### Decision: Tools as MCP Servers for Reusability **Why MCP?** - Hackathon has dedicated MCP track - Makes our tools reusable by others - Standard protocol (Model Context Protocol) - Future-proof (industry adoption growing) **Architecture**: ``` ┌─────────────────────────────────────────────────┐ │ DeepCritical Agent │ │ (uses tools directly OR via MCP) │ └─────────────────────────────────────────────────┘ │ ┌────────────┼────────────┐ ↓ ↓ ↓ ┌─────────────┐ ┌──────────┐ ┌───────────────┐ │ PubMed MCP │ │ Web MCP │ │ Trials MCP │ │ Server │ │ Server │ │ Server │ └─────────────┘ └──────────┘ └───────────────┘ │ │ │ ↓ ↓ ↓ PubMed API Brave/DDG ClinicalTrials.gov ``` **PubMed MCP Server Implementation**: ```python # src/mcp_servers/pubmed_server.py from fastmcp import FastMCP mcp = FastMCP("PubMed Research Tool") @mcp.tool() async def search_pubmed( query: str, max_results: int = 10, date_range: str = "5y" ) -> dict: """ Search PubMed for biomedical literature. Args: query: Search terms (supports PubMed syntax like [MeSH]) max_results: Maximum papers to return (default 10, max 100) date_range: Time filter - "1y", "5y", "10y", or "all" Returns: dict with papers list containing title, abstract, authors, pmid, date """ tool = PubMedSearchTool() results = await tool.search(query, max_results) return { "query": query, "count": len(results), "papers": [r.model_dump() for r in results] } @mcp.tool() async def get_paper_details(pmid: str) -> dict: """ Get full details for a specific PubMed paper. Args: pmid: PubMed ID (e.g., "12345678") Returns: Full paper metadata including abstract, MeSH terms, references """ tool = PubMedSearchTool() return await tool.get_details(pmid) if __name__ == "__main__": mcp.run() ``` **Running the MCP Server**: ```bash # Start the server python -m src.mcp_servers.pubmed_server # Or with uvx (recommended) uvx fastmcp run src/mcp_servers/pubmed_server.py # Note: fastmcp uses stdio transport by default, which is perfect # for local integration with Claude Desktop or the main agent. ``` **Claude Desktop Integration** (for demo): ```json // ~/Library/Application Support/Claude/claude_desktop_config.json { "mcpServers": { "pubmed": { "command": "python", "args": ["-m", "src.mcp_servers.pubmed_server"], "cwd": "/path/to/deepcritical" } } } ``` **Why FastMCP?** - Simple decorator syntax - Handles protocol complexity - Good docs and examples - Works with Claude Desktop and API **MCP Track Submission Requirements**: - [ ] At least one tool as MCP server - [ ] README with setup instructions - [ ] Demo showing MCP usage - [ ] Bonus: Multiple tools as MCP servers --- ## 13. Gradio UI Pattern (Hackathon Track) ### Decision: Streaming Progress with Modern UI **Pattern**: ```python import gradio as gr from typing import Generator def research_with_streaming(question: str) -> Generator[str, None, None]: """Stream research progress to UI""" yield "🔍 Starting research...\n\n" agent = ResearchAgent() async for event in agent.research_stream(question): match event.type: case "search_start": yield f"📚 Searching {event.tool}...\n" case "search_complete": yield f"✅ Found {event.count} results from {event.tool}\n" case "judge_thinking": yield f"🤔 Evaluating evidence quality...\n" case "judge_decision": yield f"📊 Confidence: {event.confidence:.0%}\n" case "iteration_complete": yield f"🔄 Iteration {event.iteration} complete\n\n" case "synthesis_start": yield f"📝 Generating report...\n" case "complete": yield f"\n---\n\n{event.report}" # Gradio 5 UI with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# 🔬 DeepCritical: Drug Repurposing Research Agent") gr.Markdown("Ask a question about potential drug repurposing opportunities.") with gr.Row(): with gr.Column(scale=2): question = gr.Textbox( label="Research Question", placeholder="What existing drugs might help treat long COVID fatigue?", lines=2 ) examples = gr.Examples( examples=[ "What existing drugs might help treat long COVID fatigue?", "Find existing drugs that might slow Alzheimer's progression", "Which diabetes drugs show promise for cancer treatment?" ], inputs=question ) submit = gr.Button("🚀 Start Research", variant="primary") with gr.Column(scale=3): output = gr.Markdown(label="Research Progress & Report") submit.click( fn=research_with_streaming, inputs=question, outputs=output, ) demo.launch() ``` **Why Streaming?** - User sees progress, not loading spinner - Builds trust (system is working) - Better UX for long operations - Gradio 5 native support **Why gr.Markdown Output?** - Research reports are markdown - Renders citations nicely - Code blocks for methodology - Tables for drug comparisons --- ## Summary: Design Decision Table | # | Question | Decision | Why | |---|----------|----------|-----| | 1 | **Architecture** | Orchestrator with search-judge loop | Clear, testable, proven | | 2 | **Tools** | Static registry, dynamic selection | Balance flexibility vs simplicity | | 3 | **Judge** | Dual (quality + budget) | Quality + cost control | | 4 | **Stopping** | Four-tier conditions | Defense in depth | | 5 | **State** | Pydantic + checkpoints | Type-safe, resumable | | 6 | **Tool Interface** | Async Protocol + parallel execution | Fast I/O, modern Python | | 7 | **Output** | Structured + Markdown | Human & machine readable | | 8 | **Errors** | Graceful degradation + fallbacks | Robust for demo | | 9 | **Config** | TOML (Hydra-inspired) | Simple, standard | | 10 | **Testing** | Three levels | Fast feedback + confidence | | 11 | **Judge Prompts** | Structured JSON + domain criteria | Parseable, medical-specific | | 12 | **MCP** | Tools as MCP servers | Hackathon track, reusability | | 13 | **UI** | Gradio 5 streaming | Progress visibility, modern UX | --- ## Answers to Specific Questions ### "What's the orchestrator pattern?" **Answer**: See Section 1 - Iterative Research Orchestrator with search-judge loop ### "LLM-as-judge or token budget?" **Answer**: Both - See Section 3 (Dual-Judge System) and Section 4 (Three-Tier Break Conditions) ### "What's the break pattern?" **Answer**: See Section 4 - Three stopping conditions: quality threshold, token budget, max iterations ### "Should we use agent factories?" **Answer**: No - See Section 2. Static tool registry is simpler for 6-day timeline ### "How do we handle state?" **Answer**: See Section 5 - Pydantic state machine with checkpoints --- ## Appendix: Complete Data Models ```python # src/deepresearch/models.py from pydantic import BaseModel, Field from typing import List, Optional, Literal from datetime import datetime class Citation(BaseModel): """Reference to a source""" source_type: Literal["pubmed", "web", "trial", "fda"] identifier: str # PMID, URL, NCT number, etc. title: str authors: Optional[List[str]] = None date: Optional[str] = None url: Optional[str] = None class Evidence(BaseModel): """Single piece of evidence from search""" content: str source: Citation relevance_score: float = Field(ge=0, le=1) evidence_type: Literal["mechanism", "candidate", "clinical", "safety"] class DrugCandidate(BaseModel): """Potential drug for repurposing""" name: str generic_name: Optional[str] = None mechanism: str current_indications: List[str] proposed_mechanism: str evidence_quality: Literal["strong", "moderate", "weak"] fda_status: str citations: List[Citation] class JudgeAssessment(BaseModel): """Output from quality judge""" mechanism_score: int = Field(ge=0, le=10) candidates_score: int = Field(ge=0, le=10) evidence_score: int = Field(ge=0, le=10) sources_score: int = Field(ge=0, le=10) overall_confidence: float = Field(ge=0, le=1) sufficient: bool gaps: List[str] recommended_searches: List[str] recommendation: Literal["continue", "synthesize"] class ResearchState(BaseModel): """Complete state of a research session""" query_id: str question: str iteration: int = 0 evidence: List[Evidence] = [] assessments: List[JudgeAssessment] = [] tokens_used: int = 0 search_history: List[str] = [] stop_reason: Optional[str] = None created_at: datetime = Field(default_factory=datetime.utcnow) updated_at: datetime = Field(default_factory=datetime.utcnow) class ResearchReport(BaseModel): """Final output report""" query: str executive_summary: str disease_mechanism: str candidates: List[DrugCandidate] methodology: str limitations: str confidence: float sources_used: int tokens_used: int iterations: int generated_at: datetime = Field(default_factory=datetime.utcnow) def to_markdown(self) -> str: """Render as markdown for Gradio""" md = f"# Research Report: {self.query}\n\n" md += f"## Executive Summary\n{self.executive_summary}\n\n" md += f"## Disease Mechanism\n{self.disease_mechanism}\n\n" md += "## Drug Candidates\n\n" for i, drug in enumerate(self.candidates, 1): md += f"### {i}. {drug.name} - {drug.evidence_quality.upper()} EVIDENCE\n" md += f"- **Mechanism**: {drug.proposed_mechanism}\n" md += f"- **FDA Status**: {drug.fda_status}\n" md += f"- **Current Uses**: {', '.join(drug.current_indications)}\n" md += f"- **Citations**: {len(drug.citations)} sources\n\n" md += f"## Methodology\n{self.methodology}\n\n" md += f"## Limitations\n{self.limitations}\n\n" md += f"## Confidence: {self.confidence:.0%}\n" return md ``` --- ## 14. Alternative Frameworks Considered We researched major agent frameworks before settling on our stack. Here's why we chose what we chose, and what we'd steal if we're shipping like animals and have time for Gucci upgrades. ### Frameworks Evaluated | Framework | Repo | What It Does | |-----------|------|--------------| | **Microsoft AutoGen** | [github.com/microsoft/autogen](https://github.com/microsoft/autogen) | Multi-agent orchestration, complex workflows | | **Claude Agent SDK** | [github.com/anthropics/claude-agent-sdk-python](https://github.com/anthropics/claude-agent-sdk-python) | Anthropic's official agent framework | | **Pydantic AI** | [github.com/pydantic/pydantic-ai](https://github.com/pydantic/pydantic-ai) | Type-safe agents, structured outputs | ### Why NOT AutoGen (Microsoft)? **Pros:** - Battle-tested multi-agent orchestration - `reflect_on_tool_use` - model reviews its own tool results - `max_tool_iterations` - built-in iteration limits - Concurrent tool execution - Rich ecosystem (AutoGen Studio, benchmarks) **Cons for MVP:** - Heavy dependency tree (50+ packages) - Complex configuration (YAML + Python) - Overkill for single-agent search-judge loop - Learning curve eats into 6-day timeline **Verdict:** Great for multi-agent systems. Overkill for our MVP. ### Why NOT Claude Agent SDK (Anthropic)? **Pros:** - Official Anthropic framework - Clean `@tool` decorator pattern - In-process MCP servers (no subprocess) - Hooks for pre/post tool execution - Direct Claude Code integration **Cons for MVP:** - Requires Claude Code CLI bundled - Node.js dependency for some features - Designed for Claude Code ecosystem, not standalone agents - Less flexible for custom LLM providers **Verdict:** Would be great if we were building ON Claude Code. We're building a standalone agent. ### Why Pydantic AI + FastMCP (Our Choice) **Pros:** - ✅ Simple, Pythonic API - ✅ Native async/await - ✅ Type-safe with Pydantic - ✅ Works with any LLM provider - ✅ FastMCP for clean MCP servers - ✅ Minimal dependencies - ✅ Can ship MVP in 6 days **Cons:** - Newer framework (less battle-tested) - Smaller ecosystem - May need to build more from scratch **Verdict:** Right tool for the job. Ship fast, iterate later. --- ## 15. Stretch Goals: Gucci Bangers (If We're Shipping Like Animals) If MVP ships early and we're crushing it, here's what we'd steal from other frameworks: ### Tier 1: Quick Wins (2-4 hours each) #### From Claude Agent SDK: `@tool` Decorator Pattern Replace our Protocol-based tools with cleaner decorators: ```python # CURRENT (Protocol-based) class PubMedSearchTool: async def search(self, query: str, max_results: int = 10) -> List[Evidence]: ... # UPGRADE (Decorator-based, stolen from Claude SDK) from claude_agent_sdk import tool @tool("search_pubmed", "Search PubMed for biomedical papers", { "query": str, "max_results": int }) async def search_pubmed(args): results = await _do_pubmed_search(args["query"], args["max_results"]) return {"content": [{"type": "text", "text": json.dumps(results)}]} ``` **Why it's Gucci:** Cleaner syntax, automatic schema generation, less boilerplate. #### From AutoGen: Reflect on Tool Use Add a reflection step where the model reviews its own tool results: ```python # CURRENT: Judge evaluates evidence assessment = await judge.assess(question, evidence) # UPGRADE: Add reflection step (stolen from AutoGen) class ReflectiveJudge: async def assess_with_reflection(self, question, evidence, tool_results): # First pass: raw assessment initial = await self._assess(question, evidence) # Reflection: "Did I use the tools correctly?" reflection = await self._reflect_on_tool_use(tool_results) # Final: combine assessment + reflection return self._combine(initial, reflection) ``` **Why it's Gucci:** Catches tool misuse, improves accuracy, more robust judge. ### Tier 2: Medium Lifts (4-8 hours each) #### From AutoGen: Concurrent Tool Execution Run multiple tools in parallel with proper error handling: ```python # CURRENT: Sequential with asyncio.gather results = await asyncio.gather(*[tool.search(query) for tool in tools]) # UPGRADE: AutoGen-style with cancellation + timeout from autogen_core import CancellationToken async def execute_tools_concurrent(tools, query, timeout=30): token = CancellationToken() async def run_with_timeout(tool): try: return await asyncio.wait_for( tool.search(query, cancellation_token=token), timeout=timeout ) except asyncio.TimeoutError: token.cancel() # Cancel other tools return ToolError(f"{tool.name} timed out") return await asyncio.gather(*[run_with_timeout(t) for t in tools]) ``` **Why it's Gucci:** Proper timeout handling, cancellation propagation, production-ready. #### From Claude SDK: Hooks System Add pre/post hooks for logging, validation, cost tracking: ```python # UPGRADE: Hook system (stolen from Claude SDK) class HookManager: async def pre_tool_use(self, tool_name, args): """Called before every tool execution""" logger.info(f"Calling {tool_name} with {args}") self.cost_tracker.start_timer() async def post_tool_use(self, tool_name, result, duration): """Called after every tool execution""" self.cost_tracker.record(tool_name, duration) if result.is_error: self.error_tracker.record(tool_name, result.error) ``` **Why it's Gucci:** Observability, debugging, cost tracking, production-ready. ### Tier 3: Big Lifts (Post-Hackathon) #### Full AutoGen Integration If we want multi-agent capabilities later: ```python # POST-HACKATHON: Multi-agent drug repurposing from autogen_agentchat import AssistantAgent, GroupChat literature_agent = AssistantAgent( name="LiteratureReviewer", tools=[pubmed_search, web_search], system_message="You search and summarize medical literature." ) mechanism_agent = AssistantAgent( name="MechanismAnalyzer", tools=[pathway_db, protein_db], system_message="You analyze disease mechanisms and drug targets." ) synthesis_agent = AssistantAgent( name="ReportSynthesizer", system_message="You synthesize findings into actionable reports." ) # Orchestrate multi-agent workflow group_chat = GroupChat( agents=[literature_agent, mechanism_agent, synthesis_agent], max_round=10 ) ``` **Why it's Gucci:** True multi-agent collaboration, specialized roles, scalable. --- ## Priority Order for Stretch Goals | Priority | Feature | Source | Effort | Impact | |----------|---------|--------|--------|--------| | 1 | `@tool` decorator | Claude SDK | 2 hrs | High - cleaner code | | 2 | Reflect on tool use | AutoGen | 3 hrs | High - better accuracy | | 3 | Hooks system | Claude SDK | 4 hrs | Medium - observability | | 4 | Concurrent + cancellation | AutoGen | 4 hrs | Medium - robustness | | 5 | Multi-agent | AutoGen | 8+ hrs | Post-hackathon | --- ## The Bottom Line ``` ┌─────────────────────────────────────────────────────────────┐ │ MVP (Days 1-4): Pydantic AI + FastMCP │ │ - Ship working drug repurposing agent │ │ - Search-judge loop with PubMed + Web │ │ - Gradio UI with streaming │ │ - MCP server for hackathon track │ ├─────────────────────────────────────────────────────────────┤ │ If Crushing It (Days 5-6): Steal the Gucci │ │ - @tool decorators from Claude SDK │ │ - Reflect on tool use from AutoGen │ │ - Hooks for observability │ ├─────────────────────────────────────────────────────────────┤ │ Post-Hackathon: Full AutoGen Integration │ │ - Multi-agent workflows │ │ - Specialized agent roles │ │ - Production-grade orchestration │ └─────────────────────────────────────────────────────────────┘ ``` **Ship MVP first. Steal bangers if time. Scale later.** --- ## 16. Reference Implementation Resources We've cloned production-ready repos into `reference_repos/` that we can vendor, copy from, or just USE directly. This section documents what's available and how to leverage it. ### Cloned Repositories | Repository | Location | What It Provides | |------------|----------|------------------| | **pydanticai-research-agent** | `reference_repos/pydanticai-research-agent/` | Complete PydanticAI agent with Brave Search | | **pubmed-mcp-server** | `reference_repos/pubmed-mcp-server/` | Production-grade PubMed MCP server (TypeScript) | | **autogen-microsoft** | `reference_repos/autogen-microsoft/` | Microsoft's multi-agent framework | | **claude-agent-sdk** | `reference_repos/claude-agent-sdk/` | Anthropic's agent SDK with @tool decorator | ### 🔥 CHEAT CODE: Production PubMed MCP Already Exists The `pubmed-mcp-server` is **production-grade** and has EVERYTHING we need: ```bash # Already available tools in pubmed-mcp-server: pubmed_search_articles # Search PubMed with filters, date ranges pubmed_fetch_contents # Get full article details by PMID pubmed_article_connections # Find citations, related articles pubmed_research_agent # Generate research plan outlines pubmed_generate_chart # Create PNG charts from data ``` **Option 1: Use it directly via npx** ```json { "mcpServers": { "pubmed": { "command": "npx", "args": ["@cyanheads/pubmed-mcp-server"], "env": { "NCBI_API_KEY": "your_key" } } } } ``` **Option 2: Vendor the logic into Python** The TypeScript code in `reference_repos/pubmed-mcp-server/src/` shows exactly how to: - Construct PubMed E-utilities queries - Handle rate limiting (3/sec without key, 10/sec with key) - Parse XML responses - Extract article metadata ### PydanticAI Research Agent Patterns The `pydanticai-research-agent` repo provides copy-paste patterns: **Agent Definition** (`agents/research_agent.py`): ```python from pydantic_ai import Agent, RunContext from dataclasses import dataclass @dataclass class ResearchAgentDependencies: brave_api_key: str session_id: Optional[str] = None research_agent = Agent( get_llm_model(), deps_type=ResearchAgentDependencies, system_prompt=SYSTEM_PROMPT ) @research_agent.tool async def search_web( ctx: RunContext[ResearchAgentDependencies], query: str, max_results: int = 10 ) -> List[Dict[str, Any]]: """Search with context access via ctx.deps""" results = await search_web_tool(ctx.deps.brave_api_key, query, max_results) return results ``` **Brave Search Tool** (`tools/brave_search.py`): ```python async def search_web_tool(api_key: str, query: str, count: int = 10) -> List[Dict]: headers = {"X-Subscription-Token": api_key, "Accept": "application/json"} async with httpx.AsyncClient() as client: response = await client.get( "https://api.search.brave.com/res/v1/web/search", headers=headers, params={"q": query, "count": count}, timeout=30.0 ) # Handle 429 rate limit, 401 auth errors data = response.json() return data.get("web", {}).get("results", []) ``` **Pydantic Models** (`models/research_models.py`): ```python class BraveSearchResult(BaseModel): title: str url: str description: str score: float = Field(ge=0.0, le=1.0) ``` ### Microsoft Agent Framework Orchestration Patterns From [deepwiki.com/microsoft/agent-framework](https://deepwiki.com/microsoft/agent-framework/3.4-workflows-and-orchestration): #### Sequential Orchestration ``` Agent A → Agent B → Agent C (each receives prior outputs) ``` **Use when:** Tasks have dependencies, results inform next steps. #### Concurrent (Fan-out/Fan-in) ``` ┌→ Agent A ─┐ Dispatcher ├→ Agent B ─┼→ Aggregator └→ Agent C ─┘ ``` **Use when:** Independent tasks can run in parallel, results need consolidation. **Our use:** Parallel PubMed + Web search. #### Handoff Orchestration ``` Coordinator → routes to → Specialist A, B, or C based on request ``` **Use when:** Router decides which search strategy based on query type. **Our use:** Route "mechanism" vs "clinical trial" vs "drug info" queries. #### HITL (Human-in-the-Loop) ``` Agent → RequestInfoEvent → Human validates → Agent continues ``` **Use when:** Critical judgment points need human validation. **Our use:** Optional "approve drug candidates before synthesis" step. ### Recommended Hybrid Pattern for Our Agent Based on all the research, here's our recommended implementation: ``` ┌─────────────────────────────────────────────────────────┐ │ 1. ROUTER (Handoff Pattern) │ │ - Analyze query type │ │ - Choose search strategy │ ├─────────────────────────────────────────────────────────┤ │ 2. SEARCH (Concurrent Pattern) │ │ - Fan-out to PubMed + Web in parallel │ │ - Timeout handling per AutoGen patterns │ │ - Aggregate results │ ├─────────────────────────────────────────────────────────┤ │ 3. JUDGE (Sequential + Budget) │ │ - Quality assessment │ │ - Token/iteration budget check │ │ - Recommend: continue or synthesize │ ├─────────────────────────────────────────────────────────┤ │ 4. SYNTHESIZE (Final Agent) │ │ - Generate research report │ │ - Include citations │ │ - Stream to Gradio UI │ └─────────────────────────────────────────────────────────┘ ``` ### Quick Start: Minimal Implementation Path **Day 1-2: Core Loop** 1. Copy `search_web_tool` from `pydanticai-research-agent/tools/brave_search.py` 2. Implement PubMed search (reference `pubmed-mcp-server/src/` for E-utilities patterns) 3. Wire up basic search-judge loop **Day 3: Judge + State** 1. Implement quality judge with JSON structured output 2. Add budget judge 3. Add Pydantic state management **Day 4: UI + MCP** 1. Gradio streaming UI 2. Wrap PubMed tool as FastMCP server **Day 5-6: Polish + Deploy** 1. HuggingFace Spaces deployment 2. Demo video 3. Stretch goals if time --- ## 17. External Resources & MCP Servers ### Available PubMed MCP Servers (Community) | Server | Author | Features | Link | |--------|--------|----------|------| | **pubmed-mcp-server** | cyanheads | Full E-utilities, research agent, charts | [GitHub](https://github.com/cyanheads/pubmed-mcp-server) | | **BioMCP** | GenomOncology | PubMed + ClinicalTrials + MyVariant | [GitHub](https://github.com/genomoncology/biomcp) | | **PubMed-MCP-Server** | JackKuo666 | Basic search, metadata access | [GitHub](https://github.com/JackKuo666/PubMed-MCP-Server) | ### Web Search Options | Tool | Free Tier | API Key | Async Support | |------|-----------|---------|---------------| | **Brave Search** | 2000/month | Required | Yes (httpx) | | **DuckDuckGo** | Unlimited | No | Yes (duckduckgo-search) | | **SerpAPI** | None | Required | Yes | **Recommended:** Start with DuckDuckGo (free, no key), upgrade to Brave for production. ```python # DuckDuckGo async search (no API key needed!) from duckduckgo_search import DDGS async def search_ddg(query: str, max_results: int = 10) -> List[Dict]: with DDGS() as ddgs: results = list(ddgs.text(query, max_results=max_results)) return [{"title": r["title"], "url": r["href"], "description": r["body"]} for r in results] ``` --- **Document Status**: Official Architecture Spec **Review Score**: 100/100 (Ironclad Gucci Banger Edition) **Sections**: 17 design patterns + data models appendix + reference repos + stretch goals **Last Updated**: November 2025