"""MCP tool wrappers for DeepCritical search tools. These functions expose our search tools via MCP protocol. Each function follows the MCP tool contract: - Full type hints - Google-style docstrings with Args section - Formatted string returns """ from src.tools.biorxiv import BioRxivTool from src.tools.clinicaltrials import ClinicalTrialsTool from src.tools.pubmed import PubMedTool # Singleton instances (avoid recreating on each call) _pubmed = PubMedTool() _trials = ClinicalTrialsTool() _biorxiv = BioRxivTool() async def search_pubmed(query: str, max_results: int = 10) -> str: """Search PubMed for peer-reviewed biomedical literature. Searches NCBI PubMed database for scientific papers matching your query. Returns titles, authors, abstracts, and citation information. Args: query: Search query (e.g., "metformin alzheimer", "drug repurposing cancer") max_results: Maximum results to return (1-50, default 10) Returns: Formatted search results with paper titles, authors, dates, and abstracts """ max_results = max(1, min(50, max_results)) # Clamp to valid range results = await _pubmed.search(query, max_results) if not results: return f"No PubMed results found for: {query}" formatted = [f"## PubMed Results for: {query}\n"] for i, evidence in enumerate(results, 1): formatted.append(f"### {i}. {evidence.citation.title}") formatted.append(f"**Authors**: {', '.join(evidence.citation.authors[:3])}") formatted.append(f"**Date**: {evidence.citation.date}") formatted.append(f"**URL**: {evidence.citation.url}") formatted.append(f"\n{evidence.content}\n") return "\n".join(formatted) async def search_clinical_trials(query: str, max_results: int = 10) -> str: """Search ClinicalTrials.gov for clinical trial data. Searches the ClinicalTrials.gov database for trials matching your query. Returns trial titles, phases, status, conditions, and interventions. Args: query: Search query (e.g., "metformin alzheimer", "diabetes phase 3") max_results: Maximum results to return (1-50, default 10) Returns: Formatted clinical trial information with NCT IDs, phases, and status """ max_results = max(1, min(50, max_results)) results = await _trials.search(query, max_results) if not results: return f"No clinical trials found for: {query}" formatted = [f"## Clinical Trials for: {query}\n"] for i, evidence in enumerate(results, 1): formatted.append(f"### {i}. {evidence.citation.title}") formatted.append(f"**URL**: {evidence.citation.url}") formatted.append(f"**Date**: {evidence.citation.date}") formatted.append(f"\n{evidence.content}\n") return "\n".join(formatted) async def search_biorxiv(query: str, max_results: int = 10) -> str: """Search bioRxiv/medRxiv for preprint research. Searches bioRxiv and medRxiv preprint servers for cutting-edge research. Note: Preprints are NOT peer-reviewed but contain the latest findings. Args: query: Search query (e.g., "metformin neuroprotection", "long covid treatment") max_results: Maximum results to return (1-50, default 10) Returns: Formatted preprint results with titles, authors, and abstracts """ max_results = max(1, min(50, max_results)) results = await _biorxiv.search(query, max_results) if not results: return f"No bioRxiv/medRxiv preprints found for: {query}" formatted = [f"## Preprint Results for: {query}\n"] for i, evidence in enumerate(results, 1): formatted.append(f"### {i}. {evidence.citation.title}") formatted.append(f"**Authors**: {', '.join(evidence.citation.authors[:3])}") formatted.append(f"**Date**: {evidence.citation.date}") formatted.append(f"**URL**: {evidence.citation.url}") formatted.append(f"\n{evidence.content}\n") return "\n".join(formatted) async def search_all_sources(query: str, max_per_source: int = 5) -> str: """Search all biomedical sources simultaneously. Performs parallel search across PubMed, ClinicalTrials.gov, and bioRxiv. This is the most comprehensive search option for drug repurposing research. Args: query: Search query (e.g., "metformin alzheimer", "aspirin cancer prevention") max_per_source: Maximum results per source (1-20, default 5) Returns: Combined results from all sources with source labels """ import asyncio max_per_source = max(1, min(20, max_per_source)) # Run all searches in parallel pubmed_task = search_pubmed(query, max_per_source) trials_task = search_clinical_trials(query, max_per_source) biorxiv_task = search_biorxiv(query, max_per_source) pubmed_results, trials_results, biorxiv_results = await asyncio.gather( pubmed_task, trials_task, biorxiv_task, return_exceptions=True ) formatted = [f"# Comprehensive Search: {query}\n"] # Add each result section (handle exceptions gracefully) if isinstance(pubmed_results, str): formatted.append(pubmed_results) else: formatted.append(f"## PubMed\n*Error: {pubmed_results}*\n") if isinstance(trials_results, str): formatted.append(trials_results) else: formatted.append(f"## Clinical Trials\n*Error: {trials_results}*\n") if isinstance(biorxiv_results, str): formatted.append(biorxiv_results) else: formatted.append(f"## Preprints\n*Error: {biorxiv_results}*\n") return "\n---\n".join(formatted) async def analyze_hypothesis( drug: str, condition: str, evidence_summary: str, ) -> str: """Perform statistical analysis of drug repurposing hypothesis using Modal. Executes AI-generated Python code in a secure Modal sandbox to analyze the statistical evidence for a drug repurposing hypothesis. Args: drug: The drug being evaluated (e.g., "metformin") condition: The target condition (e.g., "Alzheimer's disease") evidence_summary: Summary of evidence to analyze Returns: Analysis result with verdict (SUPPORTED/REFUTED/INCONCLUSIVE) and statistics """ from src.services.statistical_analyzer import get_statistical_analyzer from src.utils.config import settings from src.utils.models import Citation, Evidence if not settings.modal_available: return "Error: Modal credentials not configured. Set MODAL_TOKEN_ID and MODAL_TOKEN_SECRET." # Create evidence from summary evidence = [ Evidence( content=evidence_summary, citation=Citation( source="pubmed", title=f"Evidence for {drug} in {condition}", url="https://example.com", date="2024-01-01", authors=["User Provided"], ), relevance=0.9, ) ] analyzer = get_statistical_analyzer() result = await analyzer.analyze( query=f"Can {drug} treat {condition}?", evidence=evidence, hypothesis={"drug": drug, "target": "unknown", "pathway": "unknown", "effect": condition}, ) return f"""## Statistical Analysis: {drug} for {condition} ### Verdict: **{result.verdict}** **Confidence**: {result.confidence:.0%} ### Key Findings {chr(10).join(f"- {f}" for f in result.key_findings) or "- No specific findings extracted"} ### Execution Output ``` {result.execution_output} ``` ### Generated Code ```python {result.code_generated} ``` **Executed in Modal Sandbox** - Isolated, secure, reproducible. """