# DeepCritical Workflow - Simplified Magentic Architecture
> **Architecture Pattern**: Microsoft Magentic Orchestration
> **Design Philosophy**: Simple, dynamic, manager-driven coordination
> **Key Innovation**: Intelligent manager replaces rigid sequential phases
---
## 1. High-Level Magentic Workflow
```mermaid
flowchart TD
Start([User Query]) --> Manager[Magentic Manager
Plan • Select • Assess • Adapt]
Manager -->|Plans| Task1[Task Decomposition]
Task1 --> Manager
Manager -->|Selects & Executes| HypAgent[Hypothesis Agent]
Manager -->|Selects & Executes| SearchAgent[Search Agent]
Manager -->|Selects & Executes| AnalysisAgent[Analysis Agent]
Manager -->|Selects & Executes| ReportAgent[Report Agent]
HypAgent -->|Results| Manager
SearchAgent -->|Results| Manager
AnalysisAgent -->|Results| Manager
ReportAgent -->|Results| Manager
Manager -->|Assesses Quality| Decision{Good Enough?}
Decision -->|No - Refine| Manager
Decision -->|No - Different Agent| Manager
Decision -->|No - Stalled| Replan[Reset Plan]
Replan --> Manager
Decision -->|Yes| Synthesis[Synthesize Final Result]
Synthesis --> Output([Research Report])
style Start fill:#e1f5e1
style Manager fill:#ffe6e6
style HypAgent fill:#fff4e6
style SearchAgent fill:#fff4e6
style AnalysisAgent fill:#fff4e6
style ReportAgent fill:#fff4e6
style Decision fill:#ffd6d6
style Synthesis fill:#d4edda
style Output fill:#e1f5e1
```
## 2. Magentic Manager: The 6-Phase Cycle
```mermaid
flowchart LR
P1[1. Planning
Analyze task
Create strategy] --> P2[2. Agent Selection
Pick best agent
for subtask]
P2 --> P3[3. Execution
Run selected
agent with tools]
P3 --> P4[4. Assessment
Evaluate quality
Check progress]
P4 --> Decision{Quality OK?
Progress made?}
Decision -->|Yes| P6[6. Synthesis
Combine results
Generate report]
Decision -->|No| P5[5. Iteration
Adjust plan
Try again]
P5 --> P2
P6 --> Done([Complete])
style P1 fill:#fff4e6
style P2 fill:#ffe6e6
style P3 fill:#e6f3ff
style P4 fill:#ffd6d6
style P5 fill:#fff3cd
style P6 fill:#d4edda
style Done fill:#e1f5e1
```
## 3. Simplified Agent Architecture
```mermaid
graph TB
subgraph "Orchestration Layer"
Manager[Magentic Manager
• Plans workflow
• Selects agents
• Assesses quality
• Adapts strategy]
SharedContext[(Shared Context
• Hypotheses
• Search Results
• Analysis
• Progress)]
Manager <--> SharedContext
end
subgraph "Specialist Agents"
HypAgent[Hypothesis Agent
• Domain understanding
• Hypothesis generation
• Testability refinement]
SearchAgent[Search Agent
• Multi-source search
• RAG retrieval
• Result ranking]
AnalysisAgent[Analysis Agent
• Evidence extraction
• Statistical analysis
• Code execution]
ReportAgent[Report Agent
• Report assembly
• Visualization
• Citation formatting]
end
subgraph "MCP Tools"
WebSearch[Web Search
PubMed • arXiv • bioRxiv]
CodeExec[Code Execution
Sandboxed Python]
RAG[RAG Retrieval
Vector DB • Embeddings]
Viz[Visualization
Charts • Graphs]
end
Manager -->|Selects & Directs| HypAgent
Manager -->|Selects & Directs| SearchAgent
Manager -->|Selects & Directs| AnalysisAgent
Manager -->|Selects & Directs| ReportAgent
HypAgent --> SharedContext
SearchAgent --> SharedContext
AnalysisAgent --> SharedContext
ReportAgent --> SharedContext
SearchAgent --> WebSearch
SearchAgent --> RAG
AnalysisAgent --> CodeExec
ReportAgent --> CodeExec
ReportAgent --> Viz
style Manager fill:#ffe6e6
style SharedContext fill:#ffe6f0
style HypAgent fill:#fff4e6
style SearchAgent fill:#fff4e6
style AnalysisAgent fill:#fff4e6
style ReportAgent fill:#fff4e6
style WebSearch fill:#e6f3ff
style CodeExec fill:#e6f3ff
style RAG fill:#e6f3ff
style Viz fill:#e6f3ff
```
## 4. Dynamic Workflow Example
```mermaid
sequenceDiagram
participant User
participant Manager
participant HypAgent
participant SearchAgent
participant AnalysisAgent
participant ReportAgent
User->>Manager: "Research protein folding in Alzheimer's"
Note over Manager: PLAN: Generate hypotheses → Search → Analyze → Report
Manager->>HypAgent: Generate 3 hypotheses
HypAgent-->>Manager: Returns 3 hypotheses
Note over Manager: ASSESS: Good quality, proceed
Manager->>SearchAgent: Search literature for hypothesis 1
SearchAgent-->>Manager: Returns 15 papers
Note over Manager: ASSESS: Good results, continue
Manager->>SearchAgent: Search for hypothesis 2
SearchAgent-->>Manager: Only 2 papers found
Note over Manager: ASSESS: Insufficient, refine search
Manager->>SearchAgent: Refined query for hypothesis 2
SearchAgent-->>Manager: Returns 12 papers
Note over Manager: ASSESS: Better, proceed
Manager->>AnalysisAgent: Analyze evidence for all hypotheses
AnalysisAgent-->>Manager: Returns analysis with code
Note over Manager: ASSESS: Complete, generate report
Manager->>ReportAgent: Create comprehensive report
ReportAgent-->>Manager: Returns formatted report
Note over Manager: SYNTHESIZE: Combine all results
Manager->>User: Final Research Report
```
## 5. Manager Decision Logic
```mermaid
flowchart TD
Start([Manager Receives Task]) --> Plan[Create Initial Plan]
Plan --> Select[Select Agent for Next Subtask]
Select --> Execute[Execute Agent]
Execute --> Collect[Collect Results]
Collect --> Assess[Assess Quality & Progress]
Assess --> Q1{Quality Sufficient?}
Q1 -->|No| Q2{Same Agent Can Fix?}
Q2 -->|Yes| Feedback[Provide Specific Feedback]
Feedback --> Execute
Q2 -->|No| Different[Try Different Agent]
Different --> Select
Q1 -->|Yes| Q3{Task Complete?}
Q3 -->|No| Q4{Making Progress?}
Q4 -->|Yes| Select
Q4 -->|No - Stalled| Replan[Reset Plan & Approach]
Replan --> Plan
Q3 -->|Yes| Synth[Synthesize Final Result]
Synth --> Done([Return Report])
style Start fill:#e1f5e1
style Plan fill:#fff4e6
style Select fill:#ffe6e6
style Execute fill:#e6f3ff
style Assess fill:#ffd6d6
style Q1 fill:#ffe6e6
style Q2 fill:#ffe6e6
style Q3 fill:#ffe6e6
style Q4 fill:#ffe6e6
style Synth fill:#d4edda
style Done fill:#e1f5e1
```
## 6. Hypothesis Agent Workflow
```mermaid
flowchart LR
Input[Research Query] --> Domain[Identify Domain
& Key Concepts]
Domain --> Context[Retrieve Background
Knowledge]
Context --> Generate[Generate 3-5
Initial Hypotheses]
Generate --> Refine[Refine for
Testability]
Refine --> Rank[Rank by
Quality Score]
Rank --> Output[Return Top
Hypotheses]
Output --> Struct[Hypothesis Structure:
• Statement
• Rationale
• Testability Score
• Data Requirements
• Expected Outcomes]
style Input fill:#e1f5e1
style Output fill:#fff4e6
style Struct fill:#e6f3ff
```
## 7. Search Agent Workflow
```mermaid
flowchart TD
Input[Hypotheses] --> Strategy[Formulate Search
Strategy per Hypothesis]
Strategy --> Multi[Multi-Source Search]
Multi --> PubMed[PubMed Search
via MCP]
Multi --> ArXiv[arXiv Search
via MCP]
Multi --> BioRxiv[bioRxiv Search
via MCP]
PubMed --> Aggregate[Aggregate Results]
ArXiv --> Aggregate
BioRxiv --> Aggregate
Aggregate --> Filter[Filter & Rank
by Relevance]
Filter --> Dedup[Deduplicate
Cross-Reference]
Dedup --> Embed[Embed Documents
via MCP]
Embed --> Vector[(Vector DB)]
Vector --> RAGRetrieval[RAG Retrieval
Top-K per Hypothesis]
RAGRetrieval --> Output[Return Contextualized
Search Results]
style Input fill:#fff4e6
style Multi fill:#ffe6e6
style Vector fill:#ffe6f0
style Output fill:#e6f3ff
```
## 8. Analysis Agent Workflow
```mermaid
flowchart TD
Input1[Hypotheses] --> Extract
Input2[Search Results] --> Extract[Extract Evidence
per Hypothesis]
Extract --> Methods[Determine Analysis
Methods Needed]
Methods --> Branch{Requires
Computation?}
Branch -->|Yes| GenCode[Generate Python
Analysis Code]
Branch -->|No| Qual[Qualitative
Synthesis]
GenCode --> Execute[Execute Code
via MCP Sandbox]
Execute --> Interpret1[Interpret
Results]
Qual --> Interpret2[Interpret
Findings]
Interpret1 --> Synthesize[Synthesize Evidence
Across Sources]
Interpret2 --> Synthesize
Synthesize --> Verdict[Determine Verdict
per Hypothesis]
Verdict --> Support[• Supported
• Refuted
• Inconclusive]
Support --> Gaps[Identify Knowledge
Gaps & Limitations]
Gaps --> Output[Return Analysis
Report]
style Input1 fill:#fff4e6
style Input2 fill:#e6f3ff
style Execute fill:#ffe6e6
style Output fill:#e6ffe6
```
## 9. Report Agent Workflow
```mermaid
flowchart TD
Input1[Query] --> Assemble
Input2[Hypotheses] --> Assemble
Input3[Search Results] --> Assemble
Input4[Analysis] --> Assemble[Assemble Report
Sections]
Assemble --> Exec[Executive Summary]
Assemble --> Intro[Introduction]
Assemble --> Methods[Methods]
Assemble --> Results[Results per
Hypothesis]
Assemble --> Discussion[Discussion]
Assemble --> Future[Future Directions]
Assemble --> Refs[References]
Results --> VizCheck{Needs
Visualization?}
VizCheck -->|Yes| GenViz[Generate Viz Code]
GenViz --> ExecViz[Execute via MCP
Create Charts]
ExecViz --> Combine
VizCheck -->|No| Combine[Combine All
Sections]
Exec --> Combine
Intro --> Combine
Methods --> Combine
Discussion --> Combine
Future --> Combine
Refs --> Combine
Combine --> Format[Format Output]
Format --> MD[Markdown]
Format --> PDF[PDF]
Format --> JSON[JSON]
MD --> Output[Return Final
Report]
PDF --> Output
JSON --> Output
style Input1 fill:#e1f5e1
style Input2 fill:#fff4e6
style Input3 fill:#e6f3ff
style Input4 fill:#e6ffe6
style Output fill:#d4edda
```
## 10. Data Flow & Event Streaming
```mermaid
flowchart TD
User[👤 User] -->|Research Query| UI[Gradio UI]
UI -->|Submit| Manager[Magentic Manager]
Manager -->|Event: Planning| UI
Manager -->|Select Agent| HypAgent[Hypothesis Agent]
HypAgent -->|Event: Delta/Message| UI
HypAgent -->|Hypotheses| Context[(Shared Context)]
Context -->|Retrieved by| Manager
Manager -->|Select Agent| SearchAgent[Search Agent]
SearchAgent -->|MCP Request| WebSearch[Web Search Tool]
WebSearch -->|Results| SearchAgent
SearchAgent -->|Event: Delta/Message| UI
SearchAgent -->|Documents| Context
SearchAgent -->|Embeddings| VectorDB[(Vector DB)]
Context -->|Retrieved by| Manager
Manager -->|Select Agent| AnalysisAgent[Analysis Agent]
AnalysisAgent -->|MCP Request| CodeExec[Code Execution Tool]
CodeExec -->|Results| AnalysisAgent
AnalysisAgent -->|Event: Delta/Message| UI
AnalysisAgent -->|Analysis| Context
Context -->|Retrieved by| Manager
Manager -->|Select Agent| ReportAgent[Report Agent]
ReportAgent -->|MCP Request| CodeExec
ReportAgent -->|Event: Delta/Message| UI
ReportAgent -->|Report| Context
Manager -->|Event: Final Result| UI
UI -->|Display| User
style User fill:#e1f5e1
style UI fill:#e6f3ff
style Manager fill:#ffe6e6
style Context fill:#ffe6f0
style VectorDB fill:#ffe6f0
style WebSearch fill:#f0f0f0
style CodeExec fill:#f0f0f0
```
## 11. MCP Tool Architecture
```mermaid
graph TB
subgraph "Agent Layer"
Manager[Magentic Manager]
HypAgent[Hypothesis Agent]
SearchAgent[Search Agent]
AnalysisAgent[Analysis Agent]
ReportAgent[Report Agent]
end
subgraph "MCP Protocol Layer"
Registry[MCP Tool Registry
• Discovers tools
• Routes requests
• Manages connections]
end
subgraph "MCP Servers"
Server1[Web Search Server
localhost:8001
• PubMed
• arXiv
• bioRxiv]
Server2[Code Execution Server
localhost:8002
• Sandboxed Python
• Package management]
Server3[RAG Server
localhost:8003
• Vector embeddings
• Similarity search]
Server4[Visualization Server
localhost:8004
• Chart generation
• Plot rendering]
end
subgraph "External Services"
PubMed[PubMed API]
ArXiv[arXiv API]
BioRxiv[bioRxiv API]
Modal[Modal Sandbox]
ChromaDB[(ChromaDB)]
end
SearchAgent -->|Request| Registry
AnalysisAgent -->|Request| Registry
ReportAgent -->|Request| Registry
Registry --> Server1
Registry --> Server2
Registry --> Server3
Registry --> Server4
Server1 --> PubMed
Server1 --> ArXiv
Server1 --> BioRxiv
Server2 --> Modal
Server3 --> ChromaDB
style Manager fill:#ffe6e6
style Registry fill:#fff4e6
style Server1 fill:#e6f3ff
style Server2 fill:#e6f3ff
style Server3 fill:#e6f3ff
style Server4 fill:#e6f3ff
```
## 12. Progress Tracking & Stall Detection
```mermaid
stateDiagram-v2
[*] --> Initialization: User Query
Initialization --> Planning: Manager starts
Planning --> AgentExecution: Select agent
AgentExecution --> Assessment: Collect results
Assessment --> QualityCheck: Evaluate output
QualityCheck --> AgentExecution: Poor quality
(retry < max_rounds)
QualityCheck --> Planning: Poor quality
(try different agent)
QualityCheck --> NextAgent: Good quality
(task incomplete)
QualityCheck --> Synthesis: Good quality
(task complete)
NextAgent --> AgentExecution: Select next agent
state StallDetection <>
Assessment --> StallDetection: Check progress
StallDetection --> Planning: No progress
(stall count < max)
StallDetection --> ErrorRecovery: No progress
(max stalls reached)
ErrorRecovery --> PartialReport: Generate partial results
PartialReport --> [*]
Synthesis --> FinalReport: Combine all outputs
FinalReport --> [*]
note right of QualityCheck
Manager assesses:
• Output completeness
• Quality metrics
• Progress made
end note
note right of StallDetection
Stall = no new progress
after agent execution
Triggers plan reset
end note
```
## 13. Gradio UI Integration
```mermaid
graph TD
App[Gradio App
DeepCritical Research Agent]
App --> Input[Input Section]
App --> Status[Status Section]
App --> Output[Output Section]
Input --> Query[Research Question
Text Area]
Input --> Controls[Controls]
Controls --> MaxHyp[Max Hypotheses: 1-10]
Controls --> MaxRounds[Max Rounds: 5-20]
Controls --> Submit[Start Research Button]
Status --> Log[Real-time Event Log
• Manager planning
• Agent selection
• Execution updates
• Quality assessment]
Status --> Progress[Progress Tracker
• Current agent
• Round count
• Stall count]
Output --> Tabs[Tabbed Results]
Tabs --> Tab1[Hypotheses Tab
Generated hypotheses with scores]
Tabs --> Tab2[Search Results Tab
Papers & sources found]
Tabs --> Tab3[Analysis Tab
Evidence & verdicts]
Tabs --> Tab4[Report Tab
Final research report]
Tab4 --> Download[Download Report
MD / PDF / JSON]
Submit -.->|Triggers| Workflow[Magentic Workflow]
Workflow -.->|MagenticOrchestratorMessageEvent| Log
Workflow -.->|MagenticAgentDeltaEvent| Log
Workflow -.->|MagenticAgentMessageEvent| Log
Workflow -.->|MagenticFinalResultEvent| Tab4
style App fill:#e1f5e1
style Input fill:#fff4e6
style Status fill:#e6f3ff
style Output fill:#e6ffe6
style Workflow fill:#ffe6e6
```
## 14. Complete System Context
```mermaid
graph LR
User[👤 Researcher
Asks research questions] -->|Submits query| DC[DeepCritical
Magentic Workflow]
DC -->|Literature search| PubMed[PubMed API
Medical papers]
DC -->|Preprint search| ArXiv[arXiv API
Scientific preprints]
DC -->|Biology search| BioRxiv[bioRxiv API
Biology preprints]
DC -->|Agent reasoning| Claude[Claude API
Sonnet 4 / Opus]
DC -->|Code execution| Modal[Modal Sandbox
Safe Python env]
DC -->|Vector storage| Chroma[ChromaDB
Embeddings & RAG]
DC -->|Deployed on| HF[HuggingFace Spaces
Gradio 6.0]
PubMed -->|Results| DC
ArXiv -->|Results| DC
BioRxiv -->|Results| DC
Claude -->|Responses| DC
Modal -->|Output| DC
Chroma -->|Context| DC
DC -->|Research report| User
style User fill:#e1f5e1
style DC fill:#ffe6e6
style PubMed fill:#e6f3ff
style ArXiv fill:#e6f3ff
style BioRxiv fill:#e6f3ff
style Claude fill:#ffd6d6
style Modal fill:#f0f0f0
style Chroma fill:#ffe6f0
style HF fill:#d4edda
```
## 15. Workflow Timeline (Simplified)
```mermaid
gantt
title DeepCritical Magentic Workflow - Typical Execution
dateFormat mm:ss
axisFormat %M:%S
section Manager Planning
Initial planning :p1, 00:00, 10s
section Hypothesis Agent
Generate hypotheses :h1, after p1, 30s
Manager assessment :h2, after h1, 5s
section Search Agent
Search hypothesis 1 :s1, after h2, 20s
Search hypothesis 2 :s2, after s1, 20s
Search hypothesis 3 :s3, after s2, 20s
RAG processing :s4, after s3, 15s
Manager assessment :s5, after s4, 5s
section Analysis Agent
Evidence extraction :a1, after s5, 15s
Code generation :a2, after a1, 20s
Code execution :a3, after a2, 25s
Synthesis :a4, after a3, 20s
Manager assessment :a5, after a4, 5s
section Report Agent
Report assembly :r1, after a5, 30s
Visualization :r2, after r1, 15s
Formatting :r3, after r2, 10s
section Manager Synthesis
Final synthesis :f1, after r3, 10s
```
---
## Key Differences from Original Design
| Aspect | Original (Judge-in-Loop) | New (Magentic) |
|--------|-------------------------|----------------|
| **Control Flow** | Fixed sequential phases | Dynamic agent selection |
| **Quality Control** | Separate Judge Agent | Manager assessment built-in |
| **Retry Logic** | Phase-level with feedback | Agent-level with adaptation |
| **Flexibility** | Rigid 4-phase pipeline | Adaptive workflow |
| **Complexity** | 5 agents (including Judge) | 4 agents (no Judge) |
| **Progress Tracking** | Manual state management | Built-in round/stall detection |
| **Agent Coordination** | Sequential handoff | Manager-driven dynamic selection |
| **Error Recovery** | Retry same phase | Try different agent or replan |
---
## Simplified Design Principles
1. **Manager is Intelligent**: LLM-powered manager handles planning, selection, and quality assessment
2. **No Separate Judge**: Manager's assessment phase replaces dedicated Judge Agent
3. **Dynamic Workflow**: Agents can be called multiple times in any order based on need
4. **Built-in Safety**: max_round_count (15) and max_stall_count (3) prevent infinite loops
5. **Event-Driven UI**: Real-time streaming updates to Gradio interface
6. **MCP-Powered Tools**: All external capabilities via Model Context Protocol
7. **Shared Context**: Centralized state accessible to all agents
8. **Progress Awareness**: Manager tracks what's been done and what's needed
---
## Legend
- 🔴 **Red/Pink**: Manager, orchestration, decision-making
- 🟡 **Yellow/Orange**: Specialist agents, processing
- 🔵 **Blue**: Data, tools, MCP services
- 🟣 **Purple/Pink**: Storage, databases, state
- 🟢 **Green**: User interactions, final outputs
- ⚪ **Gray**: External services, APIs
---
## Implementation Highlights
**Simple 4-Agent Setup:**
```python
workflow = (
MagenticBuilder()
.participants(
hypothesis=HypothesisAgent(tools=[background_tool]),
search=SearchAgent(tools=[web_search, rag_tool]),
analysis=AnalysisAgent(tools=[code_execution]),
report=ReportAgent(tools=[code_execution, visualization])
)
.with_standard_manager(
chat_client=AnthropicClient(model="claude-sonnet-4"),
max_round_count=15, # Prevent infinite loops
max_stall_count=3 # Detect stuck workflows
)
.build()
)
```
**Manager handles quality assessment in its instructions:**
- Checks hypothesis quality (testable, novel, clear)
- Validates search results (relevant, authoritative, recent)
- Assesses analysis soundness (methodology, evidence, conclusions)
- Ensures report completeness (all sections, proper citations)
No separate Judge Agent needed - manager does it all!
---
**Document Version**: 2.0 (Magentic Simplified)
**Last Updated**: 2025-11-24
**Architecture**: Microsoft Magentic Orchestration Pattern
**Agents**: 4 (Hypothesis, Search, Analysis, Report) + 1 Manager
**License**: MIT
## See Also
- [Orchestrators](orchestrators.md) - Overview of all orchestrator patterns
- [Graph Orchestration](graph-orchestration.md) - Graph-based execution overview
- [Graph Orchestration (Detailed)](graph_orchestration.md) - Detailed graph architecture
- [Workflows](workflows.md) - Workflow patterns summary
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation