File size: 14,339 Bytes
6a3bd1f
 
 
 
f3a4ad9
 
 
 
6a3bd1f
 
 
 
 
f3a4ad9
 
6a3bd1f
 
 
 
f3a4ad9
 
 
 
6a3bd1f
f3a4ad9
 
 
6a3bd1f
f3a4ad9
 
6a3bd1f
f3a4ad9
 
 
 
 
 
 
 
6a3bd1f
f3a4ad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3bd1f
f3a4ad9
 
 
 
 
 
 
6a3bd1f
 
f3a4ad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3bd1f
f3a4ad9
 
6a3bd1f
f3a4ad9
 
 
 
 
 
 
6a3bd1f
f3a4ad9
6a3bd1f
f3a4ad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3bd1f
f3a4ad9
 
 
 
 
 
6a3bd1f
f3a4ad9
 
 
 
6a3bd1f
 
 
f3a4ad9
6a3bd1f
 
 
 
 
 
 
 
 
 
 
 
f3a4ad9
 
 
 
6a3bd1f
 
 
f3a4ad9
6a3bd1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3a4ad9
6a3bd1f
 
 
 
 
 
 
f3a4ad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3bd1f
 
 
2afab78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3bd1f
 
f3a4ad9
6a3bd1f
f3a4ad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a3bd1f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import gradio as gr
import torch
from PIL import Image
import spaces
import os
import json
import tempfile
from typing import List, Optional

from pixcribe_pipeline import PixcribePipeline
from ui_manager import UIManager

# Initialize Pipeline and UI Manager
print("Initializing Pixcribe V5 with Batch Processing...")
print("⏳ Loading models (this may take a while)...")
pipeline = PixcribePipeline(yolo_variant='l')
ui_manager = UIManager()
print("βœ… All models loaded successfully!")

# Global variable to store latest batch results and images for export
latest_batch_results = None
latest_batch_images = None

@spaces.GPU(duration=180)
def process_images_wrapper(files, yolo_variant, caption_language, progress=gr.Progress()):
    """
    Process single or multiple images with progress tracking.

    This function automatically detects whether to use single-image or batch processing
    based on the number of files uploaded.

    Args:
        files: List of uploaded file objects (or single file)
        yolo_variant: YOLO model variant ('m', 'l', 'x')
        caption_language: Caption language ('zh', 'en')
        progress: Gradio Progress object for progress updates

    Returns:
        Tuple of (visualized_image, caption_html, batch_results_html, export_panel_visibility)
    """
    global latest_batch_results, latest_batch_images

    # Validate input
    if files is None or (isinstance(files, list) and len(files) == 0):
        error_msg = "<div style='color: #E74C3C; padding: 24px; text-align: center;'>Please upload at least one image</div>"
        return None, error_msg, "", gr.update(visible=False)

    # Convert single file to list
    if not isinstance(files, list):
        files = [files]

    # Check maximum limit
    if len(files) > 10:
        error_msg = "<div style='color: #E74C3C; padding: 24px; text-align: center;'>Maximum 10 images allowed. Please select fewer images.</div>"
        return None, error_msg, "", gr.update(visible=False)

    # Load images from files
    images = []
    for file in files:
        try:
            if hasattr(file, 'name'):
                # File object from Gradio
                img = Image.open(file.name)
            else:
                # Direct path
                img = Image.open(file)

            # Convert to RGB if needed
            if img.mode != 'RGB':
                img = img.convert('RGB')

            images.append(img)
        except Exception as e:
            print(f"⚠️ Warning: Failed to load image {file}: {str(e)}")
            continue

    if len(images) == 0:
        error_msg = "<div style='color: #E74C3C; padding: 24px; text-align: center;'>No valid images found. Please upload valid image files.</div>"
        return None, error_msg, "", gr.update(visible=False)

    platform = 'instagram'  # Fixed platform

    # Single image processing mode
    if len(images) == 1:
        try:
            results = pipeline.process_image(
                image=images[0],
                platform=platform,
                yolo_variant=yolo_variant,
                language=caption_language
            )

            if results is None:
                error_msg = "<div style='color: #E74C3C; padding: 24px; text-align: center;'>Processing failed. Check terminal logs for details.</div>"
                return None, error_msg, "", gr.update(visible=False)

            # Get visualized image with brand boxes
            visualized_image = results.get('visualized_image', images[0])

            # Format captions with copy functionality
            captions_html = ui_manager.format_captions_with_copy(results['captions'])

            # Clear batch results when in single mode
            latest_batch_results = None
            latest_batch_images = None

            return visualized_image, captions_html, "", gr.update(visible=False)

        except Exception as e:
            import traceback
            error_msg = traceback.format_exc()
            print("="*60)
            print("ERROR DETAILS:")
            print(error_msg)
            print("="*60)

            error_html = f"""
            <div style='background: #FADBD8; border: 2px solid #E74C3C; border-radius: 20px; padding: 28px; margin: 16px 0;'>
                <h3 style='color: #C0392B; margin-top: 0; font-size: 22px;'>❌ Processing Error</h3>
                <p style='color: #E74C3C; font-weight: bold; font-size: 17px; margin-bottom: 16px;'>{str(e)}</p>
                <details style='margin-top: 12px;'>
                    <summary style='cursor: pointer; color: #C0392B; font-weight: bold; font-size: 16px;'>View Full Error Trace</summary>
                    <pre style='background: white; padding: 16px; border-radius: 12px; overflow-x: auto; font-size: 13px; color: #2C3E50; margin-top: 12px;'>{error_msg}</pre>
                </details>
            </div>
            """
            return None, error_html, "", gr.update(visible=False)

    # Batch processing mode (2+ images)
    else:
        try:
            # Define progress callback
            def update_progress(progress_info):
                current = progress_info['current']
                total = progress_info['total']
                percent = progress_info['percent']

                # Update Gradio progress
                progress(percent / 100, desc=f"Processing image {current}/{total}")

            # Process batch
            batch_results = pipeline.process_batch(
                images=images,
                platform=platform,
                yolo_variant=yolo_variant,
                language=caption_language,
                progress_callback=update_progress
            )

            # Store results globally for export
            latest_batch_results = batch_results
            latest_batch_images = images

            # Format batch results as HTML
            batch_html = ui_manager.format_batch_results_html(batch_results)

            # Return None for single image display, batch results HTML, and show export panel
            return None, "", batch_html, gr.update(visible=True)

        except Exception as e:
            import traceback
            error_msg = traceback.format_exc()
            print("="*60)
            print("BATCH PROCESSING ERROR:")
            print(error_msg)
            print("="*60)

            error_html = f"""
            <div style='background: #FADBD8; border: 2px solid #E74C3C; border-radius: 20px; padding: 28px; margin: 16px 0;'>
                <h3 style='color: #C0392B; margin-top: 0; font-size: 22px;'>❌ Batch Processing Error</h3>
                <p style='color: #E74C3C; font-weight: bold; font-size: 17px; margin-bottom: 16px;'>{str(e)}</p>
                <details style='margin-top: 12px;'>
                    <summary style='cursor: pointer; color: #C0392B; font-weight: bold; font-size: 16px;'>View Full Error Trace</summary>
                    <pre style='background: white; padding: 16px; border-radius: 12px; overflow-x: auto; font-size: 13px; color: #2C3E50; margin-top: 12px;'>{error_msg}</pre>
                </details>
            </div>
            """
            return None, error_html, "", gr.update(visible=False)


def export_json_handler():
    """Export batch results to JSON file."""
    global latest_batch_results

    if latest_batch_results is None:
        return None

    try:
        # Create temporary file
        temp_dir = tempfile.gettempdir()
        output_path = os.path.join(temp_dir, "pixcribe_batch_results.json")

        # Export to JSON
        pipeline.batch_processor.export_to_json(latest_batch_results, output_path)

        return output_path
    except Exception as e:
        print(f"Export JSON error: {str(e)}")
        return None


def export_csv_handler():
    """Export batch results to CSV file."""
    global latest_batch_results

    if latest_batch_results is None:
        return None

    try:
        # Create temporary file
        temp_dir = tempfile.gettempdir()
        output_path = os.path.join(temp_dir, "pixcribe_batch_results.csv")

        # Export to CSV
        pipeline.batch_processor.export_to_csv(latest_batch_results, output_path)

        return output_path
    except Exception as e:
        print(f"Export CSV error: {str(e)}")
        return None


def export_zip_handler():
    """Export batch results to ZIP archive."""
    global latest_batch_results, latest_batch_images

    if latest_batch_results is None or latest_batch_images is None:
        return None

    try:
        # Create temporary file
        temp_dir = tempfile.gettempdir()
        output_path = os.path.join(temp_dir, "pixcribe_batch_results.zip")

        # Export to ZIP
        pipeline.batch_processor.export_to_zip(
            latest_batch_results,
            latest_batch_images,
            output_path
        )

        return output_path
    except Exception as e:
        print(f"Export ZIP error: {str(e)}")
        return None


# Create Gradio Interface
with gr.Blocks(css=ui_manager.custom_css, title="Pixcribe V5 - AI Social Media Captions") as app:

    # Header
    ui_manager.create_header()

    # Info Banner - Loading Time Notice
    ui_manager.create_info_banner()

    # Top Row - Upload Images & Detected Objects
    with gr.Row(elem_classes="main-row"):
        # Left - Upload Card
        with gr.Column(scale=1):
            with gr.Group(elem_classes="upload-card"):
                image_input = gr.File(
                    file_count="multiple",
                    file_types=["image"],
                    label="Upload Images (Max 10)",
                    elem_classes="upload-area"
                )

        # Right - Detected Objects (Single Image Mode)
        with gr.Column(scale=1):
            with gr.Group(elem_classes="results-card"):
                gr.Markdown("### Detected Objects", elem_classes="section-title")
                visualized_image = gr.Image(
                    label="",
                    elem_classes="image-container"
                )

    # Bottom - Settings Section (Full Width)
    with gr.Group(elem_classes="settings-container"):
        gr.Markdown("### Settings", elem_classes="section-title-left")

        with gr.Row(elem_classes="settings-row"):
            caption_language = gr.Radio(
                choices=[
                    ('繁體中文', 'zh'),
                    ('English', 'en')
                ],
                value='en',
                label="Caption Language",
                elem_classes="radio-group-inline"
            )

            yolo_variant = gr.Radio(
                choices=[
                    ('Fast (m)', 'm'),
                    ('Balanced (l)', 'l'),
                    ('Accurate (x)', 'x')
                ],
                value='l',
                label="Detection Mode",
                elem_classes="radio-group-inline"
            )

        # Generate Button (Centered)
        with gr.Row(elem_classes="button-row"):
            analyze_btn = gr.Button(
                "Generate Captions",
                variant="primary",
                elem_classes="generate-button"
            )

        # Processing Time Notice
        gr.HTML("""
        <div style="text-align: center; margin-top: 16px; color: #7F8C8D; font-size: 14px;">
            <span style="opacity: 0.8;">⚑ Please be patient - AI processing may take some time</span>
        </div>
        """)

    # Single Image Caption Results (Full Width)
    with gr.Group(elem_classes="caption-results-container"):
        gr.Markdown("### πŸ“ Generated Captions", elem_classes="section-title")
        caption_output = gr.HTML(
            label="",
            elem_id="caption-results"
        )

    # Batch Results Display (Initially Hidden)
    batch_results_output = gr.HTML(
        label="",
        visible=True
    )

    # Export Panel (Initially Hidden)
    with gr.Group(elem_classes="export-panel", visible=False) as export_panel:
        gr.Markdown("### πŸ“₯ Export Batch Results", elem_classes="section-title-left")

        with gr.Row():
            json_btn = gr.Button("πŸ“„ Download JSON", variant="secondary")
            csv_btn = gr.Button("πŸ“Š Download CSV", variant="secondary")
            zip_btn = gr.Button("πŸ“¦ Download ZIP", variant="secondary")

        json_file = gr.File(label="JSON Export", visible=False)
        csv_file = gr.File(label="CSV Export", visible=False)
        zip_file = gr.File(label="ZIP Export", visible=False)

    # Footer
    ui_manager.create_footer()

    gr.HTML('''
    <div style="
        display: flex;
        align-items: center;
        justify-content: center;
        gap: 20px;
        padding: 20px 0;
    ">
        <p style="
            font-family: 'Arial', sans-serif;
            font-size: 14px;
            font-weight: 500;
            letter-spacing: 2px;
            background: linear-gradient(90deg, #555, #007ACC);
            -webkit-background-clip: text;
            -webkit-text-fill-color: transparent;
            margin: 0;
            text-transform: uppercase;
            display: inline-block;
        ">EXPLORE THE CODE β†’</p>
        <a href="https://github.com/Eric-Chung-0511/Learning-Record/tree/main/Data%20Science%20Projects/Pixcribe" style="text-decoration: none;">
            <img src="https://img.shields.io/badge/GitHub-Pixcribe-007ACC?logo=github&style=for-the-badge">
        </a>
    </div>
''')

    # Connect button to processing function
    analyze_btn.click(
        fn=process_images_wrapper,
        inputs=[image_input, yolo_variant, caption_language],
        outputs=[visualized_image, caption_output, batch_results_output, export_panel]
    )

    # Connect export buttons
    json_btn.click(
        fn=export_json_handler,
        inputs=[],
        outputs=[json_file]
    ).then(
        lambda: gr.update(visible=True),
        outputs=[json_file]
    )

    csv_btn.click(
        fn=export_csv_handler,
        inputs=[],
        outputs=[csv_file]
    ).then(
        lambda: gr.update(visible=True),
        outputs=[csv_file]
    )

    zip_btn.click(
        fn=export_zip_handler,
        inputs=[],
        outputs=[zip_file]
    ).then(
        lambda: gr.update(visible=True),
        outputs=[zip_file]
    )

if __name__ == "__main__":
    app.launch(share=True)