Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -54,23 +54,54 @@ if pdf_source == "Upload a PDF file":
|
|
| 54 |
st.session_state.vector_created = False
|
| 55 |
|
| 56 |
elif pdf_source == "Enter a PDF URL":
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
# Step 2: Load & Process PDF (Only Once)
|
| 76 |
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
|
|
|
|
| 54 |
st.session_state.vector_created = False
|
| 55 |
|
| 56 |
elif pdf_source == "Enter a PDF URL":
|
| 57 |
+
pdf_url = st.text_input("Enter PDF URL:", key="pdf_url", on_change=lambda: st.session_state.update({"process_pdf": True}))
|
| 58 |
+
|
| 59 |
+
if st.session_state.get("process_pdf") and pdf_url: # β
Triggered only when Enter is pressed
|
| 60 |
+
with st.spinner("Downloading PDF..."):
|
| 61 |
+
try:
|
| 62 |
+
# Download PDF
|
| 63 |
+
response = requests.get(pdf_url)
|
| 64 |
+
if response.status_code == 200:
|
| 65 |
+
st.session_state.pdf_path = "temp.pdf"
|
| 66 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
| 67 |
+
f.write(response.content)
|
| 68 |
+
st.success("β
PDF Downloaded Successfully!")
|
| 69 |
+
else:
|
| 70 |
+
st.error("β Failed to download PDF. Check the URL.")
|
| 71 |
+
st.stop()
|
| 72 |
+
|
| 73 |
+
# Step 2: Load PDF
|
| 74 |
+
st.spinner("Loading PDF...")
|
| 75 |
+
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
| 76 |
+
docs = loader.load()
|
| 77 |
+
st.session_state.documents = docs
|
| 78 |
+
st.session_state.pdf_loaded = True
|
| 79 |
+
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
| 80 |
+
|
| 81 |
+
# Step 3: Chunking the document
|
| 82 |
+
st.spinner("Chunking the document...")
|
| 83 |
+
model_name = "nomic-ai/modernbert-embed-base"
|
| 84 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
|
| 85 |
+
text_splitter = SemanticChunker(embedding_model)
|
| 86 |
+
|
| 87 |
+
if st.session_state.documents:
|
| 88 |
+
documents = text_splitter.split_documents(st.session_state.documents)
|
| 89 |
+
st.session_state.documents = documents
|
| 90 |
+
st.session_state.chunked = True
|
| 91 |
+
|
| 92 |
+
# Save chunks for persistence
|
| 93 |
+
CHUNKS_FILE = "/tmp/chunks.pkl"
|
| 94 |
+
with open(CHUNKS_FILE, "wb") as f:
|
| 95 |
+
pickle.dump(documents, f)
|
| 96 |
+
|
| 97 |
+
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
| 98 |
+
|
| 99 |
+
# Reset trigger to prevent looping
|
| 100 |
+
st.session_state.process_pdf = False
|
| 101 |
+
|
| 102 |
+
except Exception as e:
|
| 103 |
+
st.error(f"β Error: {e}")
|
| 104 |
+
|
| 105 |
|
| 106 |
# Step 2: Load & Process PDF (Only Once)
|
| 107 |
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
|