Enoch1359 commited on
Commit
8eea083
·
verified ·
1 Parent(s): 49100d1

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. Dockerfile +23 -0
  2. app.py +40 -0
  3. requirements.txt +6 -0
Dockerfile ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Use a minimal base image with Python 3.9 installed
2
+ FROM python:3.9
3
+
4
+ # Set the working directory inside the container to /app
5
+ WORKDIR /app
6
+
7
+ # Copy all files from the current directory on the host to the container's /app directory
8
+ COPY . .
9
+
10
+ # Install Python dependencies listed in requirements.txt
11
+ RUN pip3 install -r requirements.txt
12
+
13
+ RUN useradd -m -u 1000 user
14
+ USER user
15
+ ENV HOME=/home/user \
16
+ PATH=/home/user/.local/bin:$PATH
17
+
18
+ WORKDIR $HOME/app
19
+
20
+ COPY --chown=user . $HOME/app
21
+
22
+ # Define the command to run the Streamlit app on port "8501" and make it accessible externally
23
+ CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from huggingface_hub import hf_hub_download
4
+ import joblib
5
+
6
+ # Download and load the model
7
+ model_path = hf_hub_download(repo_id="Enoch1359/machine_failure_model", filename="best_machine_failure_model_v1.joblib")
8
+ model = joblib.load(model_path)
9
+
10
+ # Streamlit UI for Machine Failure Prediction
11
+ st.title("Machine Failure Prediction App")
12
+ st.write("""
13
+ This application predicts the likelihood of a machine failing based on its operational parameters.
14
+ Please enter the sensor and configuration data below to get a prediction.
15
+ """)
16
+
17
+ # User input
18
+ Type = st.selectbox("Machine Type", ["H", "L", "M"])
19
+ air_temp = st.number_input("Air Temperature (K)", min_value=250.0, max_value=400.0, value=298.0, step=0.1)
20
+ process_temp = st.number_input("Process Temperature (K)", min_value=250.0, max_value=500.0, value=324.0, step=0.1)
21
+ rot_speed = st.number_input("Rotational Speed (RPM)", min_value=0, max_value=3000, value=1400)
22
+ torque = st.number_input("Torque (Nm)", min_value=0.0, max_value=100.0, value=40.0, step=0.1)
23
+ tool_wear = st.number_input("Tool Wear (min)", min_value=0, max_value=300, value=10)
24
+
25
+ # Assemble input into DataFrame
26
+ input_data = pd.DataFrame([{
27
+ 'Air temperature': air_temp,
28
+ 'Process temperature': process_temp,
29
+ 'Rotational speed': rot_speed,
30
+ 'Torque': torque,
31
+ 'Tool wear': tool_wear,
32
+ 'Type': Type
33
+ }])
34
+
35
+
36
+ if st.button("Predict Failure"):
37
+ prediction = model.predict(input_data)[0]
38
+ result = "Machine Failure" if prediction == 1 else "No Failure"
39
+ st.subheader("Prediction Result:")
40
+ st.success(f"The model predicts: **{result}**")
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ pandas==2.2.2
2
+ huggingface_hub==0.32.6
3
+ streamlit==1.43.2
4
+ joblib==1.5.1
5
+ scikit-learn==1.6.0
6
+ xgboost==2.1.4