import streamlit as st import pandas as pd from huggingface_hub import hf_hub_download import joblib # Download and load the model model_path = hf_hub_download(repo_id="Enoch1359/machine_failure_model", filename="best_machine_failure_model_v1.joblib") model = joblib.load(model_path) # Streamlit UI for Machine Failure Prediction st.title("Machine Failure Prediction App") st.write(""" This application predicts the likelihood of a machine failing based on its operational parameters. Please enter the sensor and configuration data below to get a predictions. """) # User input Type = st.selectbox("Machine Type", ["H", "L", "M"]) air_temp = st.number_input("Air Temperature (K)", min_value=250.0, max_value=400.0, value=298.0, step=0.1) process_temp = st.number_input("Process Temperature (K)", min_value=250.0, max_value=500.0, value=324.0, step=0.1) rot_speed = st.number_input("Rotational Speed (RPM)", min_value=0, max_value=3000, value=1400) torque = st.number_input("Torque (Nm)", min_value=0.0, max_value=100.0, value=40.0, step=0.1) tool_wear = st.number_input("Tool Wear (min)", min_value=0, max_value=300, value=10) # Assemble input into DataFrame input_data = pd.DataFrame([{ 'Air temperature': air_temp, 'Process temperature': process_temp, 'Rotational speed': rot_speed, 'Torque': torque, 'Tool wear': tool_wear, 'Type': Type }]) if st.button("Predict Failure"): prediction = model.predict(input_data)[0] result = "Machine Failure" if prediction == 1 else "No Failure" st.subheader("Prediction Result:") st.success(f"The model predicts: **{result}**")