import streamlit as st import pandas as pd import joblib as jb def load_model(): return jb.load('model.joblib') mm2=load_model() st.title('custo_churn') st.write('enter the details') cred=st.number_input('credit score',min_value=300,max_value=900,value=650) geo=st.selectbox('geography',['France','Germany','Spain']) Age = st.number_input("Age (customer's age in years)", min_value=18, max_value=100, value=30) Tenure = st.number_input("Tenure (number of years the customer has been with the bank)", value=12) Balance = st.number_input("Account Balance (customer’s account balance)", min_value=0.0, value=10000.0) NumOfProducts = st.number_input("Number of Products (number of products the customer has with the bank)", min_value=1, value=1) HasCrCard = st.selectbox("Has Credit Card?", ["Yes", "No"]) IsActiveMember = st.selectbox("Is Active Member?", ["Yes", "No"]) EstimatedSalary = st.number_input("Estimated Salary (customer’s estimated salary)", min_value=0.0, value=50000.0) input_data = pd.DataFrame([{ 'CreditScore': cred, 'Geography': geo, 'Age': Age, 'Tenure': Tenure, 'Balance': Balance, 'NumOfProducts': NumOfProducts, 'HasCrCard': 1 if HasCrCard == "Yes" else 0, 'IsActiveMember': 1 if IsActiveMember == "Yes" else 0, 'EstimatedSalary': EstimatedSalary }]) ct=0.45 if st.button('predict'): prediction_proba=mm2.predict_proba(input_data)[0,1] prediction=(prediction_proba>=ct).astype(int) result='churn' if prediction==1 else 'not churn' st.write(f'based on the information provided the customer is likely to {result}')