import gradio as gr from huggingface_hub import InferenceClient def respond( message, history, system_message, max_tokens, temperature, top_p, hf_token: gr.OAuthToken, ): """ Função de resposta usando Hugging Face Inference API. """ # Use o token diretamente se estiver testando localmente client = InferenceClient(token=hf_token.token, model="apple/FastVLM-7B") messages = [{"role": "system", "content": system_message}] if history: for h in history: if isinstance(h, tuple) and len(h) == 2: user_msg, bot_msg = h messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": bot_msg}) messages.append({"role": "user", "content": message}) response = "" try: for message_chunk in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): if hasattr(message_chunk, "choices") and message_chunk.choices: delta = message_chunk.choices[0].delta if delta and hasattr(delta, "content"): response += delta.content yield response except Exception as e: yield f"Erro durante a execução: {str(e)}" chatbot = gr.ChatInterface( respond, type="messages", additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) with gr.Blocks() as demo: with gr.Sidebar(): gr.LoginButton() chatbot.render() if __name__ == "__main__": demo.launch()