File size: 12,940 Bytes
71cd91e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import math
import json
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Dict
from torch.nn.utils.rnn import pad_sequence

from fireredtts2.codec.rvq import ResidualVQ
from fireredtts2.codec.decoder import AcousticDecoder
from fireredtts2.codec.utils import make_nonpad_mask
from fireredtts2.codec.whisper import (
    WhisperEncoderLayer,
    PretrainedWhisperEncoder,
    WhisperAcousticEncoder,
)


class SslAdaptor(nn.Module):
    def __init__(
        self,
        in_dim: int,
        embed_dim: int,
        out_dim: int,
        num_layers: int,
        num_heads: int,
        ffn_dim: int = None,
        attn_dropout: float = 0.0,
        dropout: float = 0.0,
    ):
        super().__init__()
        self.in_dim = in_dim
        self.embed_dim = embed_dim
        self.dropout = dropout
        # Input Projection
        self.in_proj = nn.Linear(in_dim, embed_dim)
        # Transformer
        self.layers = nn.ModuleList(
            [
                WhisperEncoderLayer(
                    embed_dim, num_heads, ffn_dim, attn_dropout, dropout
                )
                for _ in range(num_layers)
            ]
        )
        # Output norm
        self.layer_norm = nn.LayerNorm(embed_dim)
        # Output projection
        self.out_proj = nn.Linear(embed_dim, out_dim)
        # Init weight
        self.apply(self._init_weights)

    def forward(
        self,
        hidden_states: torch.Tensor,
        hidden_length: torch.Tensor,
    ):
        # Downsampling
        hidden_states = self.in_proj(hidden_states)
        # Transformer
        attention_mask = make_nonpad_mask(hidden_length).unsqueeze(1)  # (b, 1, t)
        for layer in self.layers:
            hidden_states = layer(hidden_states, attention_mask)
        hidden_states = self.layer_norm(hidden_states)
        hidden_states = self.out_proj(hidden_states)
        return hidden_states, hidden_length

    def _init_weights(self, module):
        std = 0.02
        if isinstance(module, (nn.Linear, nn.Conv1d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class ResidualDownConv(nn.Module):
    def __init__(
        self,
        embed_dim: int = 768,
        avg_pooler=4,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.avg_pooler = avg_pooler
        self.intermediate_dim = embed_dim * avg_pooler
        # Convolution layer for downsampling
        self.gate_proj = nn.Conv1d(
            embed_dim, self.intermediate_dim, avg_pooler, avg_pooler, bias=False
        )
        self.up_proj = nn.Conv1d(
            embed_dim, self.intermediate_dim, avg_pooler, avg_pooler, bias=False
        )
        # Downsampled linear projection
        self.down_proj = nn.Linear(
            self.intermediate_dim, self.intermediate_dim, bias=False
        )
        # Activation function and layer normalization
        self.act_fn = nn.SiLU()
        self.layer_norm = nn.LayerNorm(self.intermediate_dim)
        # Final output projection
        self.out_proj = nn.Linear(self.intermediate_dim, embed_dim)

    def forward(self, x: torch.Tensor, input_length: torch.Tensor):
        output_length = input_length // self.avg_pooler
        batch_size, seq_len, _ = x.shape  # (B, T, D)

        xt = x.permute(0, 2, 1)  # (B, D, T)
        g = self.gate_proj(xt).permute(0, 2, 1)  # (B, T//4, D*4)
        u = self.up_proj(xt).permute(0, 2, 1)  # (B, T//4, D*4)
        x = x.reshape(batch_size, -1, self.intermediate_dim)  # (B, T//4, D*4)

        c = self.down_proj(self.act_fn(g) * u)  # (B, T//4, D*4)
        res = self.layer_norm(c + x)  # (B, T//4, D*4)

        res = self.out_proj(res)
        return res, output_length


class UpConv(nn.Module):
    def __init__(
        self,
        embed_dim: int = 768,
        stride: int = 4,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.stride = stride
        self.in_proj = nn.Linear(embed_dim, self.stride * embed_dim)
        # Simple transpose convolution layer to keep channel number consistent
        self.up_conv = nn.ConvTranspose1d(
            self.stride * embed_dim,
            embed_dim,
            kernel_size=stride,
            stride=stride,
            bias=False,
        )

    def forward(self, x: torch.Tensor, input_length: torch.Tensor):
        x = self.in_proj(x)
        x = x.transpose(1, 2)
        res = self.up_conv(x)
        res = res.transpose(1, 2)
        output_length = input_length * self.stride
        return res, output_length


class RedCodec(nn.Module):
    def __init__(
        self,
        ssl: PretrainedWhisperEncoder,
        ssl_adaptor: SslAdaptor,
        acoustic_encoder: WhisperAcousticEncoder,
        downsample: ResidualDownConv,
        rvq: ResidualVQ,
        upsample: UpConv,
        semantic_decoder: SslAdaptor,
        acoustic_decoder: AcousticDecoder,
    ):
        super().__init__()
        self.ssl = ssl
        self.ssl_adaptor = ssl_adaptor
        self.acoustic_encoder = acoustic_encoder
        self.downsample = downsample
        self.rvq = rvq
        self.upsample = upsample
        self.semantic_decoder = semantic_decoder
        self.acoustic_decoder = acoustic_decoder

    @classmethod
    def from_config(cls, config_json: str) -> "RedCodec":
        with open(config_json, "rb") as f:
            config = json.load(f)["codec"]
        ssl = PretrainedWhisperEncoder.from_pretrained()
        ssl_adaptor = SslAdaptor(**config["ssl_adaptor"])
        acoustic_encoder = WhisperAcousticEncoder(**config["acoustic_encoder"])
        downsample = ResidualDownConv(**config["downsample"])
        rvq = ResidualVQ(**config["rvq"])
        upsample = UpConv(**config["upsample"])
        semantic_decoder = SslAdaptor(**config["semantic_decoder"])
        acoustic_decoder = AcousticDecoder(**config["acoustic_decoder"])
        return cls(
            ssl,
            ssl_adaptor,
            acoustic_encoder,
            downsample,
            rvq,
            upsample,
            semantic_decoder,
            acoustic_decoder,
        )


class RedCodecInfer(RedCodec):
    def __init__(self, codec: RedCodec):
        super().__init__(
            codec.ssl,
            codec.ssl_adaptor,
            codec.acoustic_encoder,
            codec.downsample,
            codec.rvq,
            codec.upsample,
            codec.semantic_decoder,
            codec.acoustic_decoder,
        )

    @classmethod
    def from_pretrained(cls, conf_path: str, ckpt_path: str) -> "RedCodecInfer":
        with open(conf_path, "r") as f:
            codec = RedCodec.from_config(conf_path)
        ckpt = torch.load(ckpt_path)["generator"]
        codec.load_state_dict(ckpt)
        return cls(codec)

    def _encode_one_batch(self, audio16k: torch.Tensor):
        B, T = audio16k.shape
        audio16k_length = torch.tensor(
            [T] * B, dtype=torch.long, device=audio16k.device
        )
        # Semantic
        ssl, ssl_length = self.ssl.forward(audio16k, audio16k_length)
        ssl = ssl.clone()  # For onnx export
        sem_feats, sem_length = self.ssl_adaptor(ssl, ssl_length)
        # Acoustic
        aco_feats, aco_length = self.acoustic_encoder(audio16k, audio16k_length)
        # VQ
        vq_in_feats = torch.cat([sem_feats, aco_feats], dim=2)
        vq_in_feats, vq_in_length = self.downsample(vq_in_feats, aco_length)
        # RVQ,
        indices = self.rvq.encode_codes(vq_in_feats.transpose(1, 2))  # (nq, B, L)
        indices = indices.permute(1, 0, 2)
        return indices  # (B, nq, L)

    @staticmethod
    def _pad_and_chunk(audio: torch.Tensor, chunk_size: int) -> List[torch.Tensor]:
        pad_len = math.ceil(audio.shape[1] / chunk_size) * chunk_size - audio.shape[1]
        audio = F.pad(audio, (0, pad_len), mode="constant", value=0)
        audio_chunks = audio.split(chunk_size, dim=1)
        return audio_chunks

    @torch.inference_mode()
    def encode(
        self,
        audio16k: torch.Tensor,
        audio16k_length: torch.Tensor = None,
        batch_size: int = 96,
    ):
        """
        Args:
            audio16k: shape (b, t)
            audio16k_length: (b,)
        Returns:
            token: shape (b, nq, l)
            token_length: (b,)
        """
        if audio16k_length is None:
            assert audio16k.shape[0] == 1
            audio16k_length = torch.tensor(
                [audio16k.shape[1]], dtype=torch.long, device=audio16k.device
            )

        CHUNK_SIZE = 6 * 16000
        B, T = audio16k.shape
        # Pad, chunk, and batch
        audio16k_batch = []
        batch_size_list = []
        for i in range(B):
            # Remove extra paddings
            one_audio_chunks = self._pad_and_chunk(
                audio16k[i : (i + 1), : audio16k_length[i]], CHUNK_SIZE
            )
            audio16k_batch += one_audio_chunks
            batch_size_list.append(len(one_audio_chunks))
        audio16k_batch = torch.cat(audio16k_batch, dim=0)
        # Batch encode
        token_batch = []
        for i in range(0, audio16k_batch.shape[0], batch_size):
            one_audio_batch = audio16k_batch[i : (i + batch_size)]
            one_token_batch = self._encode_one_batch(one_audio_batch)
            token_batch.append(one_token_batch)
        token_batch = torch.cat(token_batch, dim=0)
        # Recover & concat
        token_list = torch.split(
            token_batch, batch_size_list, dim=0
        )  # [(B=1, nq, l), (B=3, nq, l), ...]
        token_list = [
            torch.cat(token_ts.split(1, dim=0), dim=-1)  # (B=1, nq, l)
            for token_ts in token_list
        ]
        # Pad tokens
        token = pad_sequence(
            [ts.squeeze(0).transpose(1, 0) for ts in token_list],
            batch_first=True,
            padding_value=0,
        ).transpose(
            1, 2
        )  # (B, nq, L)
        token_length = (audio16k_length / 1280).ceil().long()
        token = token[
            ..., : token_length.max()
        ]  # Remove extra paddings (we pad to multiples of 6s)
        return token, token_length

    @torch.inference_mode()
    def decode(self, tokens: torch.Tensor):
        """
        Args:
            tokens: (B=1, nq, L)
        Returns:
            audio: (B=1, t)
        """
        tokens = tokens.permute(1, 0, 2)  # (B, nq, L) -> (nq, B, L)
        vq_out_feats = self.rvq.decode_codes(tokens)
        vq_out_feats = vq_out_feats.transpose(1, 2)
        vq_out_length = torch.tensor(
            [vq_out_feats.shape[1]], dtype=torch.long, device=vq_out_feats.device
        )
        vq_out_feats, vq_out_length = self.upsample(vq_out_feats, vq_out_length)
        # audio: (b, t)
        audio, audio_length = self.acoustic_decoder(vq_out_feats, vq_out_length)
        return audio

    @torch.inference_mode()
    def decode_one_token(
        self, token: torch.Tensor, cache_dict: Dict[str, torch.Tensor], last_token: bool
    ):
        """Decode one single token to audio.

        Args:
            token: (B=1, nq, L=1)
        Returns:
            audio:  (B=1, t)
        """
        # token->latent->upsample, (naturally causal)
        token = token.permute(1, 0, 2)  # (B, nq, L) -> (nq, B, L)
        vq_out_feats = self.rvq.decode_codes(token)
        vq_out_feats = vq_out_feats.transpose(1, 2)
        vq_out_length = torch.tensor(
            [vq_out_feats.shape[1]], dtype=torch.long, device=vq_out_feats.device
        )
        vq_out_feats, vq_out_length = self.upsample(vq_out_feats, vq_out_length)
        # acoustic decoder
        up_conv_cache = cache_dict.get("up_conv_cache", None)
        bb_conv_cache1 = cache_dict.get("bb_conv_cache1", None)
        bb_conv_cache2 = cache_dict.get("bb_conv_cache2", None)
        bb_kv_cache = cache_dict.get("bb_kv_cache", None)
        is_cache = cache_dict.get("is_cache", None)

        (
            audio,
            new_up_conv_cache,
            new_bb_conv_cache1,
            new_bb_conv_cache2,
            new_bb_kv_cache,
            new_is_cache,
        ) = self.acoustic_decoder.forward_chunk(
            vq_out_feats,
            up_conv_cache,
            bb_conv_cache1,
            bb_conv_cache2,
            bb_kv_cache,
            is_cache,
            last_token,
        )

        new_cache_dict = {
            "up_conv_cache": new_up_conv_cache,
            "bb_conv_cache1": new_bb_conv_cache1,
            "bb_conv_cache2": new_bb_conv_cache2,
            "bb_kv_cache": new_bb_kv_cache,
            "is_cache": new_is_cache,
        }
        return audio, new_cache_dict