Spaces:
Runtime error
Runtime error
File size: 14,877 Bytes
71cd91e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 |
# Extracted from transformers' WhisperModel to simplify package dependency
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Literal
from fireredtts2.codec.utils import make_nonpad_mask
from fireredtts2.codec.audio import mel_filter_bank
def sinusoids(length: int, channels: int, max_timescale: float = 10000) -> torch.Tensor:
"""Returns sinusoids for positional embedding"""
if channels % 2 != 0:
raise ValueError(
f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels."
)
log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1)
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2))
scaled_time = torch.arange(length).view(-1, 1) * inv_timescales.view(1, -1)
return torch.cat([scaled_time.sin(), scaled_time.cos()], dim=1)
class WhisperSdpaAttention(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.bias = bias
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
):
"""
Args:
attention_mask: Bool mask or float mask. Bool mask, True indicates should attend. Float mask is added to the attention score.
"""
bsz, tgt_len, _ = hidden_states.size()
query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz)
key_states = self._shape(self.k_proj(hidden_states), tgt_len, bsz)
value_states = self._shape(self.v_proj(hidden_states), tgt_len, bsz)
# NOTE sdpa needs a 4-dim attention_mask: (b, nh, tq, tv)
if attention_mask is not None and len(attention_mask.shape) == 3:
attention_mask = attention_mask.unsqueeze(1)
attn_output = F.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
) # (bsz, nh, l, d)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output
def forward_chunk(
self,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor = None,
):
"""Forward self-attention with kv cache.
Args:
hidden_states: shape (b, t, c)
kv_cache: shape (b, nh, t, c*2)
"""
bsz, tgt_len, _ = hidden_states.size()
# shape (b, nh, t, c)
query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz)
key_states = self._shape(self.k_proj(hidden_states), tgt_len, bsz)
value_states = self._shape(self.v_proj(hidden_states), tgt_len, bsz)
# unpack cache
if kv_cache is not None:
k_cache, v_cache = kv_cache.chunk(2, dim=-1)
key_states = torch.cat([k_cache, key_states], dim=2)
value_states = torch.cat([v_cache, value_states], dim=2)
new_kv_cache = torch.cat([key_states, value_states], dim=-1)
# attention
attn_output = F.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=None,
dropout_p=0.0,
) # (bsz, nh, l, d)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, new_kv_cache
class WhisperEncoderLayer(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
ffn_dim: int = None,
attn_dropout: float = 0.0,
dropout: float = 0.0,
):
super().__init__()
self.dropout = dropout
# Attention
self.self_attn = WhisperSdpaAttention(embed_dim, num_heads, attn_dropout)
self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
# FFN
ffn_dim = ffn_dim if ffn_dim is not None else embed_dim * 4
self.fc1 = nn.Linear(embed_dim, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, embed_dim)
# Output norm
self.final_layer_norm = nn.LayerNorm(embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
):
# Attention
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states = self.self_attn(hidden_states, attention_mask)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# FFN
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = F.gelu(self.fc1(hidden_states))
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
return hidden_states
def forward_chunk(
self,
hidden_states: torch.Tensor,
kv_cache: torch.Tensor = None,
):
"""Forward self-attention with kv cache.
Args:
hidden_states: shape (b, t, c)
kv_cache: shape (b, nh, t, c*2)
"""
# Attention
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, new_kv_cache = self.self_attn.forward_chunk(
hidden_states, kv_cache
)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
# FFN
residual = hidden_states
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = F.gelu(self.fc1(hidden_states))
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = F.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
return hidden_states, new_kv_cache
class WhisperEncoder(nn.Module):
def __init__(
self,
in_dim: int,
embed_dim: int,
num_layers: int,
num_heads: int,
ffn_dim: int = None,
attn_dropout: float = 0.0,
dropout: float = 0.0,
max_positions: int = 1500,
):
super().__init__()
self.in_dim = in_dim
self.embed_dim = embed_dim
self.dropout = dropout
# Input downsampling
self.conv1 = nn.Conv1d(in_dim, embed_dim, kernel_size=3, padding=1)
self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1)
# Fixed positional embedding
self.max_positions = max_positions
self.embed_positions = nn.Embedding(self.max_positions, embed_dim)
self.embed_positions.requires_grad_(False)
# Transformer
self.layers = nn.ModuleList(
[
WhisperEncoderLayer(
embed_dim, num_heads, ffn_dim, attn_dropout, dropout
)
for _ in range(num_layers)
]
)
# Output norm
self.layer_norm = nn.LayerNorm(embed_dim)
# Init weight
self.apply(self._init_weights)
# Init position embedding
self.embed_positions.weight.copy_(sinusoids(*self.embed_positions.weight.shape))
def forward(
self,
hidden_states: torch.Tensor,
hidden_length: torch.Tensor,
apply_position: bool = True,
):
# Downsampling
hidden_states = hidden_states.transpose(1, 2)
hidden_states = F.gelu(self.conv1(hidden_states))
hidden_states = F.gelu(self.conv2(hidden_states))
hidden_states = hidden_states.transpose(1, 2)
hidden_length = hidden_length // 2 # from 100Hz -> 50Hz
# Pos encoding
if apply_position:
pos_embed = self.embed_positions(
torch.arange(0, hidden_states.shape[1], device=hidden_states.device)
)
hidden_states = hidden_states + pos_embed
hidden_states = nn.functional.dropout(
hidden_states, p=self.dropout, training=self.training
)
# Transformer
attention_mask = make_nonpad_mask(hidden_length).unsqueeze(1) # (b, 1, t)
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask)
hidden_states = self.layer_norm(hidden_states)
return hidden_states, hidden_length
def _init_weights(self, module):
std = 0.02
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
class WhisperMelExtractor(nn.Module):
def __init__(
self,
num_mels: int = 128,
sampling_rate: int = 16000,
hop_length: int = 160,
n_fft: int = 400,
fmin: float = 0,
fmax: float = 8000,
padding_value=0.0,
):
super().__init__()
self.num_mels = num_mels
self.sampling_rate = sampling_rate
self.hop_length = hop_length
self.n_fft = n_fft
self.fmin = fmin
self.fmax = fmax
self.padding_value = padding_value
self.mel_filters = mel_filter_bank(
num_frequency_bins=(1 + n_fft // 2),
num_mel_filters=num_mels,
min_frequency=fmin,
max_frequency=fmax,
sampling_rate=sampling_rate,
norm="slaney",
mel_scale="slaney",
)
def extract_fbank(self, audio: torch.Tensor):
"""
Args:
audio: batched audio of shape (b, t)
"""
device = audio.device # compute on cuda if input is on cuda
# Mel
window = torch.hann_window(self.n_fft).to(device)
stft = torch.stft(
audio, self.n_fft, self.hop_length, window=window, return_complex=True
)
magnitudes = stft[..., :-1].abs() ** 2
mel_filters = torch.from_numpy(self.mel_filters).type(torch.float32).to(device)
mel_spec = mel_filters.T @ magnitudes
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
# Norm
max_val = log_spec.max(dim=2, keepdim=True)[0].max(dim=1, keepdim=True)[0]
log_spec = torch.maximum(log_spec, max_val - 8.0)
log_spec = (log_spec + 4.0) / 4.0
return log_spec
def __call__(self, audio16k: torch.Tensor, audio16k_length: torch.Tensor):
mel = self.extract_fbank(audio16k).transpose(1, 2)
mel_length = audio16k_length // self.hop_length
# mel: (b, t, c=128)
return mel, mel_length
# Pretrained encoder from whisper-large-v3
class PretrainedWhisperEncoder(WhisperEncoder):
@classmethod
def from_pretrained(cls, pretrained_path: str = None):
encoder = cls(
in_dim=128,
embed_dim=1280,
num_layers=32,
num_heads=20,
ffn_dim=5120,
attn_dropout=0.0,
max_positions=1500,
)
if pretrained_path is not None:
ckpt = torch.load(pretrained_path, map_location="cpu")
encoder.load_state_dict(ckpt)
encoder.eval()
# Disable grad
for p in encoder.parameters():
p.requires_grad_(False)
# Add Mel extractor
encoder.feature_extractor = WhisperMelExtractor(
num_mels=128,
sampling_rate=16000,
hop_length=160,
n_fft=400,
fmin=0,
fmax=8000,
)
return encoder
@torch.inference_mode()
def forward(self, audio16k: torch.Tensor, audio16k_length: torch.Tensor):
# Extract mel
mel, mel_length = self.feature_extractor(audio16k, audio16k_length)
# Forward model
semantic_feats, semantic_length = super().forward(
mel, mel_length, apply_position=True
)
return semantic_feats, semantic_length
class WhisperAcousticEncoder(WhisperEncoder):
def __init__(
self,
# Mel extraction params
num_mels: int = 128,
sampling_rate: int = 16000,
hop_length: int = 160,
n_fft: int = 400,
fmin: float = 0.0,
fmax: float = 8000,
# Encoder params
embed_dim: int = 768,
num_layers: int = 12,
num_heads: int = 8,
ffn_dim: int = None,
attn_dropout: float = 0.0,
dropout: float = 0.0,
max_positions: int = 1500, # 50Hz * 30s
):
super().__init__(
in_dim=num_mels,
embed_dim=embed_dim,
num_layers=num_layers,
num_heads=num_heads,
ffn_dim=ffn_dim,
attn_dropout=attn_dropout,
dropout=dropout,
max_positions=max_positions,
)
self.feature_extractor = WhisperMelExtractor(
num_mels=num_mels,
sampling_rate=sampling_rate,
hop_length=hop_length,
n_fft=n_fft,
fmin=fmin,
fmax=fmax,
)
def forward(self, audio16k: torch.Tensor, audio16k_length: torch.Tensor):
# Extract mel
with torch.no_grad():
mel, mel_length = self.feature_extractor(audio16k, audio16k_length)
# Forward model
hidden_states, hidden_length = super().forward(
mel, mel_length, apply_position=True
)
return hidden_states, hidden_length
|