Spaces:
Runtime error
Runtime error
| # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved. | |
| # | |
| # This source code is licensed under the BSD license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| from dataclasses import asdict, dataclass | |
| from typing import Optional, Type, TypeVar | |
| import torch | |
| Self = TypeVar("Self", bound="SimplicialEmbedding") | |
| class SimplicialEmbeddingConfig: | |
| L: int | |
| temperature: float | |
| class SimplicialEmbedding(torch.nn.Module): | |
| """ | |
| An implementation of the "Simplicial Embeddings"_, as proposed by Lavoie et. al | |
| Arguments: | |
| - L: the number of embedding chunks | |
| - temperature: optional scaling parameter for the softmax operation. | |
| A small (<1.) temperature will lead to a sparse representation (up to one-hot), | |
| while a large (>1.) temperature will make the vector more uniform | |
| _"Simplicial Embeddings": https://arxiv.org/pdf/2204.00616.pdf | |
| """ | |
| def __init__(self, L: int, temperature: Optional[float] = None) -> None: | |
| super().__init__() | |
| self.L = L | |
| self.temperature = temperature | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| assert ( | |
| x.shape[-1] % self.L == 0 | |
| ), f"The embedding dimension {x.shape[-1]} is not divisible by the chosen L parameter {self.L}" | |
| # Separate the input tensor into V chunks | |
| B, C, E = x.shape | |
| V = E // self.L | |
| Vs = x.reshape(B, C, self.L, V) | |
| # Softmax normalize them, with the proposed temperature | |
| # This is done over the last dimension, so only within Vs | |
| if self.temperature is not None: | |
| Vs /= self.temperature | |
| Vs = torch.nn.functional.softmax(Vs, dim=-1) | |
| # Concatenate back and return | |
| return Vs.reshape(B, C, E) | |
| def from_config(cls: Type[Self], config: SimplicialEmbeddingConfig) -> Self: | |
| # Generate the class inputs from the config | |
| fields = asdict(config) | |
| return cls(**fields) | |