--- license: cc-by-4.0 task_categories: - tabular-regression - time-series-forecasting language: - fr tags: - agriculture - herbicides - weed-pressure - crop-rotation - france - bretagne - sustainability - precision-agriculture - ift - treatment-frequency-index size_categories: - 1K 2.0**: High pressure (intervention needed) ### Dataset Statistics - **Mean IFT**: 1.93 (moderate pressure) - **Range**: 0.14 - 6.67 - **Trend**: Decreasing from 2.91 (2014) to 1.74 (2024) ## Data Quality ### Completeness - **Core fields**: 95%+ completeness for essential variables - **Date fields**: Well-formatted and consistent - **Numeric fields**: Validated ranges and units - **Geographic data**: Anonymized but consistent plot identifiers ### Validation - **Cross-references**: Product codes validated against official databases - **Temporal consistency**: Logical intervention sequences - **Agronomic validity**: Realistic crop rotations and treatment patterns ### Limitations - **Geographic scope**: Single experimental station (limited geographic diversity) - **Weather data**: Not included (external source required) - **Economic data**: Treatment costs not provided - **Soil characteristics**: Limited soil type information ## Ethical Considerations ### Privacy Protection - **Location data**: Generalized to protect farm location - **Personal information**: All farmer identifying data removed - **Commercial sensitivity**: Product usage patterns aggregated when appropriate ### Bias Considerations - **Geographic bias**: Limited to Brittany region - **Temporal bias**: Recent years may have different practices - **Selection bias**: Experimental station may not represent typical farms - **Technology bias**: Practices may reflect research station capabilities ## Applications ### 1. Weed Pressure Prediction Use machine learning models to predict future IFT values based on: - Historical treatment patterns - Crop rotation sequences - Environmental factors - Plot characteristics **Example Model Performance**: - Random Forest Regressor: R² = 0.65-0.85 - Features: Year, plot surface, previous IFT, crop type, rotation sequence ### 2. Sustainable Plot Selection Identify plots suitable for sensitive crops (peas, beans) by: - Analyzing historical IFT trends - Evaluating rotation impacts - Assessing risk levels for future years ### 3. Crop Rotation Optimization Optimize rotation sequences through: - Impact analysis of different crop sequences - Identification of beneficial rotations - Risk assessment for specific transitions **Best Rotations (Lowest IFT)**: 1. Peas → Rapeseed: IFT 0.62 2. Winter Barley → Rapeseed: IFT 0.64 3. Corn → Spring Barley: IFT 0.69 ### 4. Herbicide Alternative Analysis Support reduction strategies through: - Product usage pattern analysis - Temporal trend identification - Alternative strategy development ## Code Examples ### Loading the Dataset ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("HackathonCRA/2024") # Convert to pandas for analysis import pandas as pd df = dataset["train"].to_pandas() print(f"Loaded {len(df)} intervention records") print(f"Covering {df['year'].nunique()} years") ``` ### Calculate IFT ```python # Calculate IFT for herbicide applications herbicides = df[df['familleprod'].str.contains('Herbicides', na=False)] ift_data = herbicides.groupby(['plot_name', 'year', 'crop_type']).agg({ 'quantitetot': 'sum', 'produit': 'count', # Number of applications 'surfparc': 'first' }).reset_index() ift_data['ift'] = ift_data['produit'] / ift_data['surfparc'] ``` ### Analyze Crop Rotations ```python # Create rotation sequences rotations = [] for plot in df['plot_name'].unique(): plot_data = df[df['plot_name'] == plot].sort_values('year') crops = plot_data.groupby('year')['crop_type'].first() for i in range(len(crops)-1): rotation = f"{crops.iloc[i]} → {crops.iloc[i+1]}" rotations.append({ 'plot': plot, 'year_from': crops.index[i], 'year_to': crops.index[i+1], 'rotation': rotation }) rotation_df = pd.DataFrame(rotations) ``` ## Related Datasets - **Weather Data**: Consider integrating with Météo-France data for enhanced analysis - **Soil Data**: European Soil Database for soil type information - **Economic Data**: Agricultural input cost databases - **Regulatory Data**: AMM (Marketing Authorization) product databases ## Citation If you use this dataset in your research, please cite: ```bibtex @dataset{hackathon_cra_2024, title={Station Expérimentale de Kerguéhennec Agricultural Interventions Dataset}, author={Hackathon CRA Team}, year={2024}, publisher={Hugging Face}, url={https://huggingface.co/datasets/HackathonCRA/2024}, note={Agricultural intervention data from Brittany, France (2014-2024)} } ``` ## License This dataset is released under CC-BY-4.0 license, allowing for both commercial and research use with proper attribution. ## Updates and Versioning - **Version 1.0**: Initial release with 2014-2024 data - **Future versions**: May include additional years or enhanced metadata - **Quality improvements**: Ongoing validation and cleaning ## Contact For questions about this dataset, collaboration opportunities, or data corrections, please use the Hugging Face dataset discussion feature or contact the research team through the repository. --- **Keywords**: agriculture, herbicides, crop rotation, sustainable farming, France, Brittany, IFT, weed management, precision agriculture, time series, regression, treatment frequency