Update app.py
Browse files
app.py
CHANGED
|
@@ -1,657 +1,35 @@
|
|
| 1 |
-
# ===== CRITICAL: Import spaces FIRST before any CUDA operations =====
|
| 2 |
-
try:
|
| 3 |
-
import spaces
|
| 4 |
-
HF_SPACES = True
|
| 5 |
-
except ImportError:
|
| 6 |
-
# If running locally, create a dummy decorator
|
| 7 |
-
def spaces_gpu_decorator(duration=60):
|
| 8 |
-
def decorator(func):
|
| 9 |
-
return func
|
| 10 |
-
return decorator
|
| 11 |
-
spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})()
|
| 12 |
-
HF_SPACES = False
|
| 13 |
-
print("Warning: Running without Hugging Face Spaces GPU allocation")
|
| 14 |
-
|
| 15 |
-
# ===== Now import other libraries =====
|
| 16 |
-
import random
|
| 17 |
import os
|
| 18 |
-
import
|
| 19 |
-
import
|
| 20 |
-
import
|
| 21 |
-
from datetime import datetime
|
| 22 |
-
|
| 23 |
-
import gradio as gr
|
| 24 |
-
import numpy as np
|
| 25 |
-
import requests
|
| 26 |
-
import torch
|
| 27 |
-
from diffusers import DiffusionPipeline
|
| 28 |
-
from PIL import Image
|
| 29 |
-
|
| 30 |
-
# ===== OpenAI ์ค์ =====
|
| 31 |
-
from openai import OpenAI
|
| 32 |
-
|
| 33 |
-
# Add error handling for API key
|
| 34 |
-
try:
|
| 35 |
-
client = OpenAI(api_key=os.getenv("LLM_API"))
|
| 36 |
-
except Exception as e:
|
| 37 |
-
print(f"Warning: OpenAI client initialization failed: {e}")
|
| 38 |
-
client = None
|
| 39 |
-
|
| 40 |
-
# ===== ํ๋กฌํํธ ์ฆ๊ฐ์ฉ ์คํ์ผ ํ๋ฆฌ์
=====
|
| 41 |
-
STYLE_PRESETS = {
|
| 42 |
-
"None": "",
|
| 43 |
-
"Realistic Photo": "photorealistic, 8k, ultra-detailed, cinematic lighting, realistic skin texture",
|
| 44 |
-
"Oil Painting": "oil painting, rich brush strokes, canvas texture, baroque lighting",
|
| 45 |
-
"Comic Book": "comic book style, bold ink outlines, cel shading, vibrant colors",
|
| 46 |
-
"Watercolor": "watercolor illustration, soft gradients, splatter effect, pastel palette",
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
# ===== ์ ์ฅ ํด๋ =====
|
| 50 |
-
SAVE_DIR = "saved_images"
|
| 51 |
-
if not os.path.exists(SAVE_DIR):
|
| 52 |
-
os.makedirs(SAVE_DIR, exist_ok=True)
|
| 53 |
-
|
| 54 |
-
# ===== ๋๋ฐ์ด์ค & ๋ชจ๋ธ ๋ก๋ =====
|
| 55 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 56 |
-
print(f"Using device: {device}")
|
| 57 |
-
|
| 58 |
-
repo_id = "black-forest-labs/FLUX.1-dev"
|
| 59 |
-
adapter_id = "seawolf2357/chocs"
|
| 60 |
-
|
| 61 |
-
# Add error handling for model loading
|
| 62 |
-
try:
|
| 63 |
-
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
| 64 |
-
pipeline.load_lora_weights(adapter_id)
|
| 65 |
-
pipeline = pipeline.to(device)
|
| 66 |
-
print("Model loaded successfully")
|
| 67 |
-
except Exception as e:
|
| 68 |
-
print(f"Error loading model: {e}")
|
| 69 |
-
pipeline = None
|
| 70 |
-
|
| 71 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 72 |
-
MAX_IMAGE_SIZE = 1024
|
| 73 |
-
|
| 74 |
-
# ===== ํ๊ธ ์ฌ๋ถ ํ๋ณ =====
|
| 75 |
-
HANGUL_RE = re.compile(r"[\u3131-\u318E\uAC00-\uD7A3]+")
|
| 76 |
-
|
| 77 |
-
def is_korean(text: str) -> bool:
|
| 78 |
-
return bool(HANGUL_RE.search(text))
|
| 79 |
-
|
| 80 |
-
# ===== ๋ฒ์ญ & ์ฆ๊ฐ ํจ์ =====
|
| 81 |
-
|
| 82 |
-
def openai_translate(text: str, retries: int = 3) -> str:
|
| 83 |
-
"""ํ๊ธ์ ์์ด๋ก ๋ฒ์ญ (OpenAI GPT-4o-mini ์ฌ์ฉ). ์์ด ์
๋ ฅ์ด๋ฉด ๊ทธ๋๋ก ๋ฐํ."""
|
| 84 |
-
if not is_korean(text):
|
| 85 |
-
return text
|
| 86 |
-
|
| 87 |
-
if client is None:
|
| 88 |
-
print("Warning: OpenAI client not available, returning original text")
|
| 89 |
-
return text
|
| 90 |
-
|
| 91 |
-
for attempt in range(retries):
|
| 92 |
-
try:
|
| 93 |
-
res = client.chat.completions.create(
|
| 94 |
-
model="gpt-4o-mini",
|
| 95 |
-
messages=[
|
| 96 |
-
{
|
| 97 |
-
"role": "system",
|
| 98 |
-
"content": "Translate the following Korean prompt into concise, descriptive English suitable for an image generation model. Keep the meaning, do not add new concepts."
|
| 99 |
-
},
|
| 100 |
-
{"role": "user", "content": text}
|
| 101 |
-
],
|
| 102 |
-
temperature=0.3,
|
| 103 |
-
max_tokens=256,
|
| 104 |
-
)
|
| 105 |
-
return res.choices[0].message.content.strip()
|
| 106 |
-
except Exception as e:
|
| 107 |
-
print(f"[translate] attempt {attempt + 1} failed: {e}")
|
| 108 |
-
time.sleep(2)
|
| 109 |
-
return text # ๋ฒ์ญ ์คํจ ์ ์๋ฌธ ๊ทธ๋๋ก
|
| 110 |
-
|
| 111 |
-
def enhance_prompt(text: str, retries: int = 3) -> str:
|
| 112 |
-
"""OpenAI๋ฅผ ํตํด ํ๋กฌํํธ๋ฅผ ์ฆ๊ฐํ์ฌ ๊ณ ํ์ง ์ด๋ฏธ์ง ์์ฑ์ ์ํ ์์ธํ ์ค๋ช
์ผ๋ก ๋ณํ."""
|
| 113 |
-
if client is None:
|
| 114 |
-
print("Warning: OpenAI client not available, returning original text")
|
| 115 |
-
return text
|
| 116 |
-
|
| 117 |
-
for attempt in range(retries):
|
| 118 |
-
try:
|
| 119 |
-
res = client.chat.completions.create(
|
| 120 |
-
model="gpt-4o-mini",
|
| 121 |
-
messages=[
|
| 122 |
-
{
|
| 123 |
-
"role": "system",
|
| 124 |
-
"content": """You are an expert prompt engineer for image generation models. Enhance the given prompt to create high-quality, detailed images.
|
| 125 |
-
|
| 126 |
-
Guidelines:
|
| 127 |
-
- Add specific visual details (lighting, composition, colors, textures)
|
| 128 |
-
- Include technical photography terms (depth of field, focal length, etc.)
|
| 129 |
-
- Add atmosphere and mood descriptors
|
| 130 |
-
- Specify image quality terms (4K, ultra-detailed, professional, etc.)
|
| 131 |
-
- Keep the core subject and meaning intact
|
| 132 |
-
- Make it comprehensive but not overly long
|
| 133 |
-
- Focus on visual elements that will improve image generation quality
|
| 134 |
|
| 135 |
-
|
| 136 |
-
Input: "A man giving a speech"
|
| 137 |
-
Output: "A professional man giving an inspiring speech at a podium, dramatic lighting with warm spotlights, confident posture and gestures, high-resolution 4K photography, sharp focus, cinematic composition, bokeh background with audience silhouettes, professional event setting, detailed facial expressions, realistic skin texture"
|
| 138 |
-
"""
|
| 139 |
-
},
|
| 140 |
-
{"role": "user", "content": f"Enhance this prompt for high-quality image generation: {text}"}
|
| 141 |
-
],
|
| 142 |
-
temperature=0.7,
|
| 143 |
-
max_tokens=512,
|
| 144 |
-
)
|
| 145 |
-
return res.choices[0].message.content.strip()
|
| 146 |
-
except Exception as e:
|
| 147 |
-
print(f"[enhance] attempt {attempt + 1} failed: {e}")
|
| 148 |
-
time.sleep(2)
|
| 149 |
-
return text # ์ฆ๊ฐ ์คํจ ์ ์๋ฌธ ๊ทธ๋๋ก
|
| 150 |
-
|
| 151 |
-
def prepare_prompt(user_prompt: str, style_key: str, enhance_prompt_enabled: bool = False) -> str:
|
| 152 |
-
"""ํ๊ธ์ด๋ฉด ๋ฒ์ญํ๊ณ , ํ๋กฌํํธ ์ฆ๊ฐ ์ต์
์ด ํ์ฑํ๋๋ฉด ์ฆ๊ฐํ๊ณ , ์ ํํ ์คํ์ผ ํ๋ฆฌ์
์ ๋ถ์ฌ์ ์ต์ข
ํ๋กฌํํธ๋ฅผ ๋ง๋ ๋ค."""
|
| 153 |
-
# 1. ๋ฒ์ญ (ํ๊ธ์ธ ๊ฒฝ์ฐ)
|
| 154 |
-
prompt_en = openai_translate(user_prompt)
|
| 155 |
-
|
| 156 |
-
# 2. ํ๋กฌํํธ ์ฆ๊ฐ (ํ์ฑํ๋ ๊ฒฝ์ฐ)
|
| 157 |
-
if enhance_prompt_enabled:
|
| 158 |
-
prompt_en = enhance_prompt(prompt_en)
|
| 159 |
-
print(f"Enhanced prompt: {prompt_en}")
|
| 160 |
-
|
| 161 |
-
# 3. ์คํ์ผ ํ๋ฆฌ์
์ ์ฉ
|
| 162 |
-
style_suffix = STYLE_PRESETS.get(style_key, "")
|
| 163 |
-
if style_suffix:
|
| 164 |
-
final_prompt = f"{prompt_en}, {style_suffix}"
|
| 165 |
-
else:
|
| 166 |
-
final_prompt = prompt_en
|
| 167 |
-
|
| 168 |
-
return final_prompt
|
| 169 |
-
|
| 170 |
-
# ===== ์ด๋ฏธ์ง ์ ์ฅ =====
|
| 171 |
-
|
| 172 |
-
def save_generated_image(image: Image.Image, prompt: str) -> str:
|
| 173 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 174 |
-
unique_id = str(uuid.uuid4())[:8]
|
| 175 |
-
filename = f"{timestamp}_{unique_id}.png"
|
| 176 |
-
filepath = os.path.join(SAVE_DIR, filename)
|
| 177 |
-
image.save(filepath)
|
| 178 |
-
|
| 179 |
-
# ๋ฉํ๋ฐ์ดํฐ ์ ์ฅ
|
| 180 |
-
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
|
| 181 |
-
with open(metadata_file, "a", encoding="utf-8") as f:
|
| 182 |
-
f.write(f"{filename}|{prompt}|{timestamp}\n")
|
| 183 |
-
return filepath
|
| 184 |
-
|
| 185 |
-
# ===== Diffusion ํธ์ถ =====
|
| 186 |
-
|
| 187 |
-
def run_pipeline(prompt: str, seed: int, width: int, height: int, guidance_scale: float, num_steps: int, lora_scale: float):
|
| 188 |
-
if pipeline is None:
|
| 189 |
-
raise ValueError("Model pipeline not loaded")
|
| 190 |
-
|
| 191 |
-
generator = torch.Generator(device=device).manual_seed(int(seed))
|
| 192 |
-
result = pipeline(
|
| 193 |
-
prompt=prompt,
|
| 194 |
-
guidance_scale=guidance_scale,
|
| 195 |
-
num_inference_steps=num_steps,
|
| 196 |
-
width=width,
|
| 197 |
-
height=height,
|
| 198 |
-
generator=generator,
|
| 199 |
-
joint_attention_kwargs={"scale": lora_scale},
|
| 200 |
-
).images[0]
|
| 201 |
-
return result
|
| 202 |
-
|
| 203 |
-
# ===== Gradio inference ๋ํผ =====
|
| 204 |
-
|
| 205 |
-
@spaces.GPU(duration=60)
|
| 206 |
-
def generate_image(
|
| 207 |
-
user_prompt: str,
|
| 208 |
-
style_key: str,
|
| 209 |
-
enhance_prompt_enabled: bool = False,
|
| 210 |
-
seed: int = 42,
|
| 211 |
-
randomize_seed: bool = True,
|
| 212 |
-
width: int = 1024,
|
| 213 |
-
height: int = 768,
|
| 214 |
-
guidance_scale: float = 3.5,
|
| 215 |
-
num_inference_steps: int = 30,
|
| 216 |
-
lora_scale: float = 1.0,
|
| 217 |
-
progress=None,
|
| 218 |
-
):
|
| 219 |
try:
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
#
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
# ===== ์์ ํ๋กฌํํธ (ํ๊ตญ์ด/์์ด ํผ์ฉ ํ์ฉ) =====
|
| 242 |
-
|
| 243 |
-
examples = [
|
| 244 |
-
"Mr. cho ๋ ์์ผ๋ก 'Healing !' ํ์๋ง์ ๋ค๊ณ ์๋ ๋ชจ์ต, ํ๊ฒฝ๋ณดํธ์ ์ง์๊ฐ๋ฅํ ์์
๋ฐ์ ์ ๋ํ ์์ง๋ฅผ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.",
|
| 245 |
-
"Mr. cho ์ํ์ ๋ค์ด ์ฌ๋ฆฌ๋ฉฐ ๊ธฐ์ ํ์ ์ผ๋ก ํํธํ๋ ๋ชจ์ต, ์กฐ๋ฆผ ์ฌ์
์ฑ๊ณต๊ณผ ๋ฏธ๋ ์์
์ ๋ํ ํฌ๋ง์ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.",
|
| 246 |
-
"Mr. cho ์ด๋๋ณต์ ์
๊ณ ์ฐ๋ฆผ ์์์ ํธ๋ ํนํ๋ ๋ชจ์ต, ๊ฑด๊ฐํ ์ํ์ต๊ด๊ณผ ํ๊ธฐ์ฐฌ ๋ฆฌ๋์ญ์ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.",
|
| 247 |
-
"Mr. cho ์ฐ์ด ๋ง์์์ ์ฌ์ฑ ์์
์ธ๋ค๊ณผ ๋ฐ๋ปํ๊ฒ ์
์ํ๋ ๋ชจ์ต, ์ฌ์ฑ ์์
์ข
์ฌ์๋ค์ ๋ํ ์ง์ ํ ๊ด์ฌ๊ณผ ์ํต์ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.",
|
| 248 |
-
"Mr. cho ์์
๋ฐ๋ํ์ฅ์์ ์ธ์ฐฝํ ์ฒ์ ํฅํด ์๊ฐ๋ฝ์ผ๋ก ๊ฐ๋ฆฌํค๋ฉฐ ์๊ฐ์ ์ฃผ๋ ์ ์ค์ฒ๋ฅผ ์ทจํ๊ณ ์๊ณ , ์ฌ์ฑ๋ค๊ณผ ์์ด๋ค์ด ๋ฐ์๋ฅผ ์น๊ณ ์๋ค.",
|
| 249 |
-
"Mr. cho ์ฐ๋ฆผ์ถ์ ์ ์ฐธ์ฌํ์ฌ ์ด์ ์ ์ผ๋ก ์์ํ๋ ์ฌ์ฑ ์์
์ธ๋ค์๊ฒ ๋๋ฌ์ธ์ฌ ์๋ ๋ชจ์ต.",
|
| 250 |
-
"Mr. cho ๋ชฉ์ฌ์์ฅ์ ๋ฐฉ๋ฌธํ์ฌ ์ฌ์ฑ ๋ชฉ์ฌ์๋ค๊ณผ ๋ชฉ๊ณต์ ์ฅ์ธ๋ค๊ณผ ์น๊ทผํ๊ฒ ๋ํํ๋ ๋ชจ์ต.",
|
| 251 |
-
"Mr. cho ์ฐ๋ฆผ๊ณผํ์์ ๋๋ฌ๋ณด๋ฉฐ ์ฌ์ฑ ์ฐ๊ตฌ์๋ค๊ณผ ๊ต์๋ค๊ณผ ํจ๊ป ์์
์ ์ฑ
์ ๋ํด ํ ๋ก ํ๋ ๋ชจ์ต.",
|
| 252 |
-
"Mr. cho ๋๊ท๋ชจ ์์
์ธ ๋๏ฟฝ๏ฟฝ๏ฟฝ์์ ์์ ๊ฐ ์๋ ์ ์ค์ฒ์ ๊ฒฐ์ฐํ ํ์ ์ผ๋ก ์ญ๋์ ์ธ ์ฐ์ค์ ํ๋ ๋ชจ์ต.",
|
| 253 |
-
"Mr. cho ํ๊ธฐ์ฐฌ ์ธํฐ๋ทฐ ํ์ฅ์์ ๋ฏธ๋ ์์
๋ฐ์ ์ ๋ํ ๋น์ ์ ์ด์ ์ ์ผ๋ก ์ค๋ช
ํ๋ ๋ชจ์ต.",
|
| 254 |
-
"Mr. cho ์ค์ํ ์์
์ ์ฑ
ํ์๋ฅผ ์ค๋นํ๋ฉฐ ์๋ฅ๋ค์ ๋๋ฌ์ธ์ฌ ์ง์คํ๊ณ ๋จํธํ ๋ชจ์ต์ ๋ณด์ด๋ ๋ชจ์ต."
|
| 255 |
-
]
|
| 256 |
-
|
| 257 |
-
# ===== ์ปค์คํ
CSS (์งํ ๋ถ์์ ๊ณ ๊ธ ๋์์ธ) =====
|
| 258 |
-
custom_css = """
|
| 259 |
-
:root {
|
| 260 |
-
--color-primary: #E91E63;
|
| 261 |
-
--color-secondary: #FCE4EC;
|
| 262 |
-
--color-accent: #F8BBD9;
|
| 263 |
-
--color-rose: #F06292;
|
| 264 |
-
--color-gold: #FFB74D;
|
| 265 |
-
--color-warm-gray: #F5F5F5;
|
| 266 |
-
--color-dark-gray: #424242;
|
| 267 |
-
--background-primary: linear-gradient(135deg, #FAFAFA 0%, #F5F5F5 50%, #EEEEEE 100%);
|
| 268 |
-
--background-accent: linear-gradient(135deg, #FCE4EC 0%, #F8BBD9 100%);
|
| 269 |
-
--text-primary: #212121;
|
| 270 |
-
--text-secondary: #757575;
|
| 271 |
-
--shadow-soft: 0 4px 20px rgba(0, 0, 0, 0.08);
|
| 272 |
-
--shadow-medium: 0 8px 30px rgba(0, 0, 0, 0.12);
|
| 273 |
-
--border-radius: 16px;
|
| 274 |
-
}
|
| 275 |
-
|
| 276 |
-
/* ์ ์ฒด ๋ฐฐ๊ฒฝ */
|
| 277 |
-
footer {visibility: hidden;}
|
| 278 |
-
.gradio-container {
|
| 279 |
-
background: var(--background-primary) !important;
|
| 280 |
-
min-height: 100vh;
|
| 281 |
-
font-family: 'Inter', 'Noto Sans KR', sans-serif;
|
| 282 |
-
}
|
| 283 |
-
|
| 284 |
-
/* ํ์ดํ ์คํ์ผ */
|
| 285 |
-
.title {
|
| 286 |
-
color: var(--text-primary) !important;
|
| 287 |
-
font-size: 3rem !important;
|
| 288 |
-
font-weight: 700 !important;
|
| 289 |
-
text-align: center;
|
| 290 |
-
margin: 2rem 0;
|
| 291 |
-
background: linear-gradient(135deg, var(--color-primary) 0%, var(--color-rose) 50%, var(--color-gold) 100%);
|
| 292 |
-
-webkit-background-clip: text;
|
| 293 |
-
-webkit-text-fill-color: transparent;
|
| 294 |
-
background-clip: text;
|
| 295 |
-
letter-spacing: -0.02em;
|
| 296 |
-
}
|
| 297 |
-
|
| 298 |
-
.subtitle {
|
| 299 |
-
color: var(--text-secondary) !important;
|
| 300 |
-
font-size: 1.2rem !important;
|
| 301 |
-
text-align: center;
|
| 302 |
-
margin-bottom: 2rem;
|
| 303 |
-
font-weight: 400;
|
| 304 |
-
}
|
| 305 |
-
|
| 306 |
-
.collection-link {
|
| 307 |
-
text-align: center;
|
| 308 |
-
margin-bottom: 2rem;
|
| 309 |
-
font-size: 1rem;
|
| 310 |
-
}
|
| 311 |
-
|
| 312 |
-
.collection-link a {
|
| 313 |
-
color: var(--color-primary);
|
| 314 |
-
text-decoration: none;
|
| 315 |
-
transition: all 0.3s ease;
|
| 316 |
-
font-weight: 500;
|
| 317 |
-
border-bottom: 1px solid transparent;
|
| 318 |
-
}
|
| 319 |
-
|
| 320 |
-
.collection-link a:hover {
|
| 321 |
-
color: var(--color-rose);
|
| 322 |
-
border-bottom-color: var(--color-rose);
|
| 323 |
-
}
|
| 324 |
-
|
| 325 |
-
/* ์ฌํํ ์นด๋ ์คํ์ผ */
|
| 326 |
-
.model-description {
|
| 327 |
-
background: rgba(255, 255, 255, 0.9);
|
| 328 |
-
border: 1px solid rgba(233, 30, 99, 0.1);
|
| 329 |
-
border-radius: var(--border-radius);
|
| 330 |
-
padding: 2rem;
|
| 331 |
-
margin: 1.5rem 0;
|
| 332 |
-
box-shadow: var(--shadow-soft);
|
| 333 |
-
backdrop-filter: blur(10px);
|
| 334 |
-
-webkit-backdrop-filter: blur(10px);
|
| 335 |
-
}
|
| 336 |
-
|
| 337 |
-
.model-description p {
|
| 338 |
-
color: var(--text-primary) !important;
|
| 339 |
-
font-size: 1rem;
|
| 340 |
-
line-height: 1.6;
|
| 341 |
-
margin: 0;
|
| 342 |
-
}
|
| 343 |
-
|
| 344 |
-
/* ๋ฒํผ ์คํ์ผ */
|
| 345 |
-
button.primary {
|
| 346 |
-
background: var(--background-accent) !important;
|
| 347 |
-
color: var(--color-primary) !important;
|
| 348 |
-
border: 1px solid var(--color-accent) !important;
|
| 349 |
-
border-radius: 12px !important;
|
| 350 |
-
box-shadow: var(--shadow-soft) !important;
|
| 351 |
-
transition: all 0.2s ease !important;
|
| 352 |
-
font-weight: 600 !important;
|
| 353 |
-
font-size: 0.95rem !important;
|
| 354 |
-
}
|
| 355 |
-
|
| 356 |
-
button.primary:hover {
|
| 357 |
-
background: linear-gradient(135deg, var(--color-accent) 0%, var(--color-secondary) 100%) !important;
|
| 358 |
-
transform: translateY(-1px) !important;
|
| 359 |
-
box-shadow: var(--shadow-medium) !important;
|
| 360 |
-
}
|
| 361 |
-
|
| 362 |
-
/* ์
๋ ฅ ์ปจํ
์ด๋ */
|
| 363 |
-
.input-container {
|
| 364 |
-
background: rgba(255, 255, 255, 0.8);
|
| 365 |
-
border: 1px solid rgba(233, 30, 99, 0.15);
|
| 366 |
-
border-radius: var(--border-radius);
|
| 367 |
-
padding: 1.5rem;
|
| 368 |
-
margin-bottom: 1.5rem;
|
| 369 |
-
box-shadow: var(--shadow-soft);
|
| 370 |
-
backdrop-filter: blur(10px);
|
| 371 |
-
-webkit-backdrop-filter: blur(10px);
|
| 372 |
-
}
|
| 373 |
-
|
| 374 |
-
/* ๊ณ ๊ธ ์ค์ */
|
| 375 |
-
.advanced-settings {
|
| 376 |
-
background: rgba(255, 255, 255, 0.6);
|
| 377 |
-
border: 1px solid rgba(233, 30, 99, 0.1);
|
| 378 |
-
border-radius: var(--border-radius);
|
| 379 |
-
padding: 1.5rem;
|
| 380 |
-
margin-top: 1rem;
|
| 381 |
-
box-shadow: var(--shadow-soft);
|
| 382 |
-
backdrop-filter: blur(8px);
|
| 383 |
-
-webkit-backdrop-filter: blur(8px);
|
| 384 |
-
}
|
| 385 |
-
|
| 386 |
-
/* ์์ ์์ญ */
|
| 387 |
-
.example-region {
|
| 388 |
-
background: rgba(252, 228, 236, 0.3);
|
| 389 |
-
border: 1px solid rgba(233, 30, 99, 0.15);
|
| 390 |
-
border-radius: var(--border-radius);
|
| 391 |
-
padding: 1.5rem;
|
| 392 |
-
margin-top: 1rem;
|
| 393 |
-
box-shadow: var(--shadow-soft);
|
| 394 |
-
}
|
| 395 |
-
|
| 396 |
-
/* ํ๋กฌํํธ ์
๋ ฅ์นธ ์คํ์ผ */
|
| 397 |
-
.large-prompt textarea {
|
| 398 |
-
min-height: 120px !important;
|
| 399 |
-
font-size: 15px !important;
|
| 400 |
-
line-height: 1.5 !important;
|
| 401 |
-
background: rgba(255, 255, 255, 0.9) !important;
|
| 402 |
-
border: 2px solid rgba(233, 30, 99, 0.2) !important;
|
| 403 |
-
border-radius: 12px !important;
|
| 404 |
-
color: var(--text-primary) !important;
|
| 405 |
-
transition: all 0.3s ease !important;
|
| 406 |
-
padding: 1rem !important;
|
| 407 |
-
}
|
| 408 |
-
|
| 409 |
-
.large-prompt textarea:focus {
|
| 410 |
-
border-color: var(--color-primary) !important;
|
| 411 |
-
box-shadow: 0 0 0 3px rgba(233, 30, 99, 0.1) !important;
|
| 412 |
-
outline: none !important;
|
| 413 |
-
}
|
| 414 |
-
|
| 415 |
-
.large-prompt textarea::placeholder {
|
| 416 |
-
color: var(--text-secondary) !important;
|
| 417 |
-
font-style: italic;
|
| 418 |
-
}
|
| 419 |
-
|
| 420 |
-
/* ์์ฑ ๋ฒํผ */
|
| 421 |
-
.small-generate-btn {
|
| 422 |
-
max-width: 140px !important;
|
| 423 |
-
height: 48px !important;
|
| 424 |
-
font-size: 15px !important;
|
| 425 |
-
padding: 12px 24px !important;
|
| 426 |
-
border-radius: 12px !important;
|
| 427 |
-
font-weight: 600 !important;
|
| 428 |
-
}
|
| 429 |
-
|
| 430 |
-
/* ํ๋กฌํํธ ์ฆ๊ฐ ์น์
*/
|
| 431 |
-
.prompt-enhance-section {
|
| 432 |
-
background: linear-gradient(135deg, rgba(255, 183, 77, 0.1) 0%, rgba(252, 228, 236, 0.2) 100%);
|
| 433 |
-
border: 1px solid rgba(255, 183, 77, 0.3);
|
| 434 |
-
border-radius: var(--border-radius);
|
| 435 |
-
padding: 1.2rem;
|
| 436 |
-
margin-top: 1rem;
|
| 437 |
-
box-shadow: var(--shadow-soft);
|
| 438 |
-
}
|
| 439 |
-
|
| 440 |
-
/* ์คํ์ผ ํ๋ฆฌ์
์น์
*/
|
| 441 |
-
.style-preset-section {
|
| 442 |
-
background: linear-gradient(135deg, rgba(248, 187, 217, 0.15) 0%, rgba(252, 228, 236, 0.2) 100%);
|
| 443 |
-
border: 1px solid rgba(233, 30, 99, 0.2);
|
| 444 |
-
border-radius: var(--border-radius);
|
| 445 |
-
padding: 1.2rem;
|
| 446 |
-
margin-top: 1rem;
|
| 447 |
-
box-shadow: var(--shadow-soft);
|
| 448 |
-
}
|
| 449 |
-
|
| 450 |
-
/* ๋ผ๋ฒจ ํ
์คํธ */
|
| 451 |
-
label {
|
| 452 |
-
color: var(--text-primary) !important;
|
| 453 |
-
font-weight: 600 !important;
|
| 454 |
-
font-size: 0.95rem !important;
|
| 455 |
-
}
|
| 456 |
-
|
| 457 |
-
/* ์ ๋ณด ํ
์คํธ */
|
| 458 |
-
.gr-info, .gr-textbox-info {
|
| 459 |
-
color: var(--text-secondary) !important;
|
| 460 |
-
font-size: 0.85rem !important;
|
| 461 |
-
line-height: 1.4 !important;
|
| 462 |
-
}
|
| 463 |
-
|
| 464 |
-
/* ์์ ๋งํฌ๋ค์ด */
|
| 465 |
-
.example-region h3 {
|
| 466 |
-
color: var(--text-primary) !important;
|
| 467 |
-
font-weight: 600 !important;
|
| 468 |
-
margin-bottom: 1rem !important;
|
| 469 |
-
}
|
| 470 |
-
|
| 471 |
-
/* ํผ ์์๋ค */
|
| 472 |
-
input[type="radio"], input[type="checkbox"] {
|
| 473 |
-
accent-color: var(--color-primary) !important;
|
| 474 |
-
}
|
| 475 |
-
|
| 476 |
-
input[type="range"] {
|
| 477 |
-
accent-color: var(--color-primary) !important;
|
| 478 |
-
}
|
| 479 |
-
|
| 480 |
-
/* ๊ฒฐ๊ณผ ์ด๋ฏธ์ง ์ปจํ
์ด๋ */
|
| 481 |
-
.image-container {
|
| 482 |
-
border-radius: var(--border-radius) !important;
|
| 483 |
-
overflow: hidden !important;
|
| 484 |
-
box-shadow: var(--shadow-medium) !important;
|
| 485 |
-
background: rgba(255, 255, 255, 0.9) !important;
|
| 486 |
-
border: 1px solid rgba(233, 30, 99, 0.1) !important;
|
| 487 |
-
}
|
| 488 |
-
|
| 489 |
-
/* ์ฌ๋ผ์ด๋ ์ปจํ
์ด๋ ์คํ์ผ๋ง */
|
| 490 |
-
.gr-slider {
|
| 491 |
-
margin: 0.5rem 0 !important;
|
| 492 |
-
}
|
| 493 |
-
|
| 494 |
-
/* ์์ฝ๋์ธ ์คํ์ผ */
|
| 495 |
-
.gr-accordion {
|
| 496 |
-
border: 1px solid rgba(233, 30, 99, 0.15) !important;
|
| 497 |
-
border-radius: var(--border-radius) !important;
|
| 498 |
-
background: rgba(255, 255, 255, 0.7) !important;
|
| 499 |
-
}
|
| 500 |
-
|
| 501 |
-
.gr-accordion-header {
|
| 502 |
-
background: var(--background-accent) !important;
|
| 503 |
-
color: var(--color-primary) !important;
|
| 504 |
-
font-weight: 600 !important;
|
| 505 |
-
border-radius: var(--border-radius) var(--border-radius) 0 0 !important;
|
| 506 |
-
}
|
| 507 |
-
|
| 508 |
-
/* ๋ถ๋๋ฌ์ด ์ ๋๋ฉ์ด์
*/
|
| 509 |
-
.model-description, .input-container, .prompt-enhance-section, .style-preset-section {
|
| 510 |
-
animation: fadeInUp 0.4s ease-out;
|
| 511 |
-
}
|
| 512 |
-
|
| 513 |
-
@keyframes fadeInUp {
|
| 514 |
-
from {
|
| 515 |
-
opacity: 0;
|
| 516 |
-
transform: translateY(20px);
|
| 517 |
-
}
|
| 518 |
-
to {
|
| 519 |
-
opacity: 1;
|
| 520 |
-
transform: translateY(0);
|
| 521 |
-
}
|
| 522 |
-
}
|
| 523 |
-
|
| 524 |
-
/* ์ ์ฒด์ ์ธ ํ
์คํธ ๊ฐ๋
์ฑ ํฅ์ */
|
| 525 |
-
* {
|
| 526 |
-
-webkit-font-smoothing: antialiased;
|
| 527 |
-
-moz-osx-font-smoothing: grayscale;
|
| 528 |
-
}
|
| 529 |
-
|
| 530 |
-
/* ๋๋กญ๋ค์ด ๋ฐ ์
๋ ํธ ์คํ์ผ */
|
| 531 |
-
select, .gr-dropdown {
|
| 532 |
-
background: rgba(255, 255, 255, 0.9) !important;
|
| 533 |
-
border: 1px solid rgba(233, 30, 99, 0.2) !important;
|
| 534 |
-
border-radius: 8px !important;
|
| 535 |
-
color: var(--text-primary) !important;
|
| 536 |
-
}
|
| 537 |
-
|
| 538 |
-
/* ์ฒดํฌ๋ฐ์ค์ ๋ผ๋์ค ๋ฒํผ ๊ฐ์ */
|
| 539 |
-
.gr-checkbox, .gr-radio {
|
| 540 |
-
background: transparent !important;
|
| 541 |
-
}
|
| 542 |
-
|
| 543 |
-
/* ์ ์ฒด ์ปจํ
์ด๋ ์ฌ๋ฐฑ ์กฐ์ */
|
| 544 |
-
.gr-container {
|
| 545 |
-
max-width: 1200px !important;
|
| 546 |
-
margin: 0 auto !important;
|
| 547 |
-
padding: 2rem 1rem !important;
|
| 548 |
-
}
|
| 549 |
-
|
| 550 |
-
/* ๋ชจ๋ฐ์ผ ๋ฐ์ํ */
|
| 551 |
-
@media (max-width: 768px) {
|
| 552 |
-
.title {
|
| 553 |
-
font-size: 2.2rem !important;
|
| 554 |
-
}
|
| 555 |
-
|
| 556 |
-
.model-description, .input-container, .advanced-settings, .example-region {
|
| 557 |
-
padding: 1rem !important;
|
| 558 |
-
margin: 1rem 0 !important;
|
| 559 |
-
}
|
| 560 |
-
|
| 561 |
-
.large-prompt textarea {
|
| 562 |
-
min-height: 100px !important;
|
| 563 |
-
font-size: 14px !important;
|
| 564 |
-
}
|
| 565 |
-
}
|
| 566 |
-
"""
|
| 567 |
-
|
| 568 |
-
# ===== Gradio UI =====
|
| 569 |
-
def create_interface():
|
| 570 |
-
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
| 571 |
-
with gr.Group(elem_classes="model-description"):
|
| 572 |
-
gr.HTML("""
|
| 573 |
-
<p>
|
| 574 |
-
<strong>Mr. CHO CS</strong><br>
|
| 575 |
-
<small style="opacity: 0.8;">๋ณธ ๋ชจ๋ธ์ ์ฐ๊ตฌ ๋ชฉ์ ์ผ๋ก ํน์ ์ธ์ ์ผ๊ตด๊ณผ ์ธ๋ชจ๋ฅผ LoRA ๊ธฐ์ ๋ก ํ์ตํ ๋ชจ๋ธ์
๋๋ค.๋ชฉ์ ์ธ์ ์ฉ๋๋ก ๋ฌด๋จ ์ฌ์ฉํ์ง ์๋๋ก ์ ์ํด ์ฃผ์ธ์. ํ๋กฌํํธ์ 'cho'์ ํฌํจํ์ฌ ์ฃผ์ธ์.</small><br><br>
|
| 576 |
-
""")
|
| 577 |
-
|
| 578 |
-
# ===== ๋ฉ์ธ ์
๋ ฅ =====
|
| 579 |
-
with gr.Column():
|
| 580 |
-
with gr.Row(elem_classes="input-container"):
|
| 581 |
-
with gr.Column(scale=4):
|
| 582 |
-
user_prompt = gr.Text(
|
| 583 |
-
label="Prompt (ํ๋กฌํํธ)",
|
| 584 |
-
max_lines=5,
|
| 585 |
-
value=examples[0],
|
| 586 |
-
elem_classes="large-prompt",
|
| 587 |
-
placeholder="Enter your image description here... (์ด๋ฏธ์ง ์ค๋ช
์ ์
๋ ฅํ์ธ์...)"
|
| 588 |
-
)
|
| 589 |
-
with gr.Column(scale=1):
|
| 590 |
-
run_button = gr.Button(
|
| 591 |
-
"Generate (์์ฑ)",
|
| 592 |
-
variant="primary",
|
| 593 |
-
elem_classes="small-generate-btn"
|
| 594 |
-
)
|
| 595 |
-
|
| 596 |
-
# ํ๋กฌํํธ ์ฆ๊ฐ ์ต์
(์์ฑ ๋ฒํผ ์๋)
|
| 597 |
-
with gr.Group(elem_classes="prompt-enhance-section"):
|
| 598 |
-
enhance_prompt_checkbox = gr.Checkbox(
|
| 599 |
-
label="๐ Prompt Enhancement (ํ๋กฌํํธ ์ฆ๊ฐ)",
|
| 600 |
-
value=False,
|
| 601 |
-
info="Automatically improve your prompt using OpenAI API for high-quality image generation (OpenAI API๋ฅผ ์ฌ์ฉํ์ฌ ๊ณ ํ์ง ์ด๋ฏธ์ง ์์ฑ์ ์ํด ํ๋กฌํํธ๋ฅผ ์๋์ผ๋ก ๊ฐ์ ํฉ๋๋ค)"
|
| 602 |
-
)
|
| 603 |
|
| 604 |
-
|
| 605 |
-
|
| 606 |
-
|
| 607 |
-
|
| 608 |
-
choices=list(STYLE_PRESETS.keys()),
|
| 609 |
-
value="None",
|
| 610 |
-
interactive=True
|
| 611 |
-
)
|
| 612 |
-
|
| 613 |
-
result_image = gr.Image(label="Generated Image (์์ฑ๋ ์ด๋ฏธ์ง)")
|
| 614 |
-
seed_output = gr.Number(label="Seed (์๋๊ฐ)")
|
| 615 |
-
|
| 616 |
-
# ===== ๊ณ ๊ธ ์ค์ =====
|
| 617 |
-
with gr.Accordion("Advanced Settings (๊ณ ๊ธ ์ค์ )", open=False, elem_classes="advanced-settings"):
|
| 618 |
-
seed = gr.Slider(label="Seed (์๋๊ฐ)", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
| 619 |
-
randomize_seed = gr.Checkbox(label="Randomize seed (์๋๊ฐ ๋ฌด์์)", value=True)
|
| 620 |
-
with gr.Row():
|
| 621 |
-
width = gr.Slider(label="Width (๊ฐ๋ก)", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
| 622 |
-
height = gr.Slider(label="Height (์ธ๋ก)", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768)
|
| 623 |
-
with gr.Row():
|
| 624 |
-
guidance_scale = gr.Slider(label="Guidance scale (๊ฐ์ด๋์ค ์ค์ผ์ผ)", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
|
| 625 |
-
num_inference_steps = gr.Slider(label="Inference steps (์ถ๋ก ๋จ๊ณ)", minimum=1, maximum=50, step=1, value=30)
|
| 626 |
-
lora_scale = gr.Slider(label="LoRA scale (LoRA ์ค์ผ์ผ)", minimum=0.0, maximum=1.0, step=0.1, value=1.0)
|
| 627 |
-
|
| 628 |
-
# ===== ์์ ์์ญ =====
|
| 629 |
-
with gr.Group(elem_classes="example-region"):
|
| 630 |
-
gr.Markdown("### Examples (์์)")
|
| 631 |
-
gr.Examples(examples=examples, inputs=user_prompt, cache_examples=False)
|
| 632 |
-
|
| 633 |
-
# ===== ์ด๋ฒคํธ =====
|
| 634 |
-
run_button.click(
|
| 635 |
-
fn=generate_image,
|
| 636 |
-
inputs=[
|
| 637 |
-
user_prompt,
|
| 638 |
-
style_select,
|
| 639 |
-
enhance_prompt_checkbox,
|
| 640 |
-
seed,
|
| 641 |
-
randomize_seed,
|
| 642 |
-
width,
|
| 643 |
-
height,
|
| 644 |
-
guidance_scale,
|
| 645 |
-
num_inference_steps,
|
| 646 |
-
lora_scale,
|
| 647 |
-
],
|
| 648 |
-
outputs=[result_image, seed_output],
|
| 649 |
-
)
|
| 650 |
-
|
| 651 |
-
return demo
|
| 652 |
|
| 653 |
-
# ===== ์ ํ๋ฆฌ์ผ์ด์
์คํ =====
|
| 654 |
if __name__ == "__main__":
|
| 655 |
-
|
| 656 |
-
demo.queue()
|
| 657 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import sys
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from tempfile import NamedTemporaryFile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
try:
|
| 8 |
+
# Get the code from secrets
|
| 9 |
+
code = os.environ.get("MAIN_CODE")
|
| 10 |
+
|
| 11 |
+
if not code:
|
| 12 |
+
st.error("โ ๏ธ The application code wasn't found in secrets. Please add the MAIN_CODE secret.")
|
| 13 |
+
return
|
| 14 |
+
|
| 15 |
+
# Create a temporary Python file
|
| 16 |
+
with NamedTemporaryFile(suffix='.py', delete=False, mode='w') as tmp:
|
| 17 |
+
tmp.write(code)
|
| 18 |
+
tmp_path = tmp.name
|
| 19 |
+
|
| 20 |
+
# Execute the code
|
| 21 |
+
exec(compile(code, tmp_path, 'exec'), globals())
|
| 22 |
+
|
| 23 |
+
# Clean up the temporary file
|
| 24 |
+
try:
|
| 25 |
+
os.unlink(tmp_path)
|
| 26 |
+
except:
|
| 27 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
except Exception as e:
|
| 30 |
+
st.error(f"โ ๏ธ Error loading or executing the application: {str(e)}")
|
| 31 |
+
import traceback
|
| 32 |
+
st.code(traceback.format_exc())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
|
|
|
| 34 |
if __name__ == "__main__":
|
| 35 |
+
main()
|
|
|
|
|
|