import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch import time # نموذج NOVA AI MODEL_NAME = "TheBloke/vicuna-7B-1.1-HF" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, device_map="auto", torch_dtype=torch.float16) chat_histories = {} PERSONALITY = "أنا NOVA AI 😎، كوميدي، مغربي، وودود. نفهم أي حاجة!" def chat_nova(user_id, message): start = time.time() if user_id not in chat_histories: chat_histories[user_id] = [] conversation = PERSONALITY + "\n" for q, a in chat_histories[user_id]: conversation += f"User: {q}\nNOVA AI: {a}\n" conversation += f"User: {message}\nNOVA AI:" inputs = tokenizer(conversation, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=200) response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("NOVA AI:")[-1].strip() chat_histories[user_id].append((message, response)) if len(chat_histories[user_id]) > 10: chat_histories[user_id] = chat_histories[user_id][-10:] latency = round(time.time() - start, 2) return f"{response}\n\n(⏱ {latency}s)" # واجهة Gradio Lite with gr.Blocks() as demo: gr.Markdown("## NOVA AI Chat 💡\nشبيهة GPT-5، تجاوب سريع، كوميدية ومغربية.") user_id = gr.Textbox(label="ID المستخدم", value="user1") message = gr.Textbox(label="أدخل سؤالك") output = gr.Textbox(label="رد NOVA AI") send_btn = gr.Button("إرسال") send_btn.click(chat_nova, inputs=[user_id, message], outputs=output) demo.launch()