Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
dfc9234
1
Parent(s):
7073167
updated version
Browse files- playground.py +83 -101
playground.py
CHANGED
|
@@ -1,50 +1,38 @@
|
|
| 1 |
import copy
|
| 2 |
-
import hashlib
|
| 3 |
import os
|
| 4 |
-
import
|
| 5 |
-
# import spaces
|
| 6 |
import subprocess
|
| 7 |
import torch
|
| 8 |
-
import PIL
|
| 9 |
|
| 10 |
-
from pathlib import Path
|
| 11 |
from threading import Thread
|
| 12 |
-
from typing import List,
|
| 13 |
from urllib.parse import urlparse
|
| 14 |
from PIL import Image
|
| 15 |
|
| 16 |
import gradio as gr
|
| 17 |
-
from gradio import processing_utils
|
| 18 |
from gradio_client.client import DEFAULT_TEMP_DIR
|
| 19 |
-
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer
|
| 20 |
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
|
| 21 |
from transformers.image_transforms import resize, to_channel_dimension_format
|
| 22 |
|
| 23 |
-
|
| 24 |
|
| 25 |
DEVICE = torch.device("cuda")
|
| 26 |
MODELS = {
|
| 27 |
-
"
|
| 28 |
"HuggingFaceM4/idefics2",
|
| 29 |
trust_remote_code=True,
|
| 30 |
torch_dtype=torch.bfloat16,
|
| 31 |
token=os.environ["HF_AUTH_TOKEN"],
|
| 32 |
-
revision="
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
).to(DEVICE),
|
| 34 |
-
# "279bis - baseline - opt 18'500": AutoModelForCausalLM.from_pretrained(
|
| 35 |
-
# "HuggingFaceM4/idefics2",
|
| 36 |
-
# trust_remote_code=True,
|
| 37 |
-
# torch_dtype=torch.bfloat16,
|
| 38 |
-
# token=os.environ["HF_AUTH_TOKEN"],
|
| 39 |
-
# revision="5cd3c3a3eb5e0ea664f5ac09e73c9ef42da93a86",
|
| 40 |
-
# ).to(DEVICE),
|
| 41 |
-
# "286 - mix6 tables - opt 20'000": AutoModelForCausalLM.from_pretrained(
|
| 42 |
-
# "HuggingFaceM4/idefics2",
|
| 43 |
-
# trust_remote_code=True,
|
| 44 |
-
# torch_dtype=torch.bfloat16,
|
| 45 |
-
# token=os.environ["HF_AUTH_TOKEN"],
|
| 46 |
-
# revision="b473d49caa964991b40b79fe7cb27d51d4d023f6",
|
| 47 |
-
# ).to(DEVICE),
|
| 48 |
# "285 - continued pretraining on text sft - opt 2'000": AutoModelForCausalLM.from_pretrained(
|
| 49 |
# "HuggingFaceM4/idefics2",
|
| 50 |
# trust_remote_code=True,
|
|
@@ -247,16 +235,16 @@ def format_user_prompt_with_im_history_and_system_conditioning(
|
|
| 247 |
return resulting_list
|
| 248 |
|
| 249 |
|
| 250 |
-
|
| 251 |
def model_inference(
|
| 252 |
user_prompt,
|
| 253 |
chat_history,
|
|
|
|
| 254 |
decoding_strategy,
|
| 255 |
temperature,
|
| 256 |
max_new_tokens,
|
| 257 |
repetition_penalty,
|
| 258 |
top_p,
|
| 259 |
-
model_selector,
|
| 260 |
):
|
| 261 |
if user_prompt["text"].strip() == "" and not user_prompt["files"]:
|
| 262 |
gr.Error("Please input a query and optionally image(s).")
|
|
@@ -276,6 +264,7 @@ def model_inference(
|
|
| 276 |
streamer = TextIteratorStreamer(
|
| 277 |
PROCESSOR.tokenizer,
|
| 278 |
skip_prompt=True,
|
|
|
|
| 279 |
)
|
| 280 |
|
| 281 |
# Common parameters to all decoding strategies
|
|
@@ -302,41 +291,86 @@ def model_inference(
|
|
| 302 |
|
| 303 |
# Creating model inputs
|
| 304 |
input_text, images = prompt_list_to_model_input(formated_prompt_list)
|
| 305 |
-
print(input_text)
|
| 306 |
inputs = create_model_inputs([input_text], [images])
|
| 307 |
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
| 308 |
generation_args.update(inputs)
|
| 309 |
|
| 310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
thread = Thread(
|
| 312 |
target=MODELS[model_selector].generate,
|
| 313 |
kwargs=generation_args,
|
| 314 |
)
|
| 315 |
-
print("2")
|
| 316 |
thread.start()
|
| 317 |
-
|
| 318 |
print("start generating")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
-
|
| 321 |
-
acc_text += text_token
|
| 322 |
-
yield acc_text
|
| 323 |
-
# last_turn = chat_history.pop(-1)
|
| 324 |
-
# last_turn[-1] += acc_text
|
| 325 |
-
# if last_turn[-1].endswith("\nUser"):
|
| 326 |
-
# # Safeguard: sometimes (rarely), the model won't generate the token `<end_of_utterance>` and will go directly to generating `\nUser:`
|
| 327 |
-
# # It will thus stop the generation on `\nUser:`. But when it exits, it will have already generated `\nUser`
|
| 328 |
-
# # This post-processing ensures that we don't have an additional `\nUser` wandering around.
|
| 329 |
-
# last_turn[-1] = last_turn[-1][:-5]
|
| 330 |
-
# chat_history.append(last_turn)
|
| 331 |
-
# yield "", None, chat_history
|
| 332 |
-
# acc_text = ""
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
with gr.Blocks() as demo:
|
| 336 |
with gr.Row(elem_id="model_selector_row"):
|
| 337 |
model_selector = gr.Dropdown(
|
| 338 |
choices=MODELS.keys(),
|
| 339 |
-
value=
|
| 340 |
interactive=True,
|
| 341 |
show_label=False,
|
| 342 |
container=False,
|
|
@@ -344,57 +378,6 @@ with gr.Blocks() as demo:
|
|
| 344 |
visible=True,
|
| 345 |
)
|
| 346 |
|
| 347 |
-
# Hyper-parameters for generation
|
| 348 |
-
max_new_tokens = gr.Slider(
|
| 349 |
-
minimum=8,
|
| 350 |
-
maximum=1024,
|
| 351 |
-
value=512,
|
| 352 |
-
step=1,
|
| 353 |
-
interactive=True,
|
| 354 |
-
label="Maximum number of new tokens to generate",
|
| 355 |
-
visible=False,
|
| 356 |
-
)
|
| 357 |
-
repetition_penalty = gr.Slider(
|
| 358 |
-
minimum=0.01,
|
| 359 |
-
maximum=5.0,
|
| 360 |
-
value=1.0,
|
| 361 |
-
step=0.01,
|
| 362 |
-
interactive=True,
|
| 363 |
-
label="Repetition penalty",
|
| 364 |
-
info="1.0 is equivalent to no penalty",
|
| 365 |
-
visible=False,
|
| 366 |
-
)
|
| 367 |
-
decoding_strategy = gr.Radio(
|
| 368 |
-
[
|
| 369 |
-
"Greedy",
|
| 370 |
-
"Top P Sampling",
|
| 371 |
-
],
|
| 372 |
-
value="Greedy",
|
| 373 |
-
label="Decoding strategy",
|
| 374 |
-
interactive=True,
|
| 375 |
-
info="Higher values is equivalent to sampling more low-probability tokens.",
|
| 376 |
-
visible=False,
|
| 377 |
-
)
|
| 378 |
-
temperature = gr.Slider(
|
| 379 |
-
minimum=0.0,
|
| 380 |
-
maximum=5.0,
|
| 381 |
-
value=0.4,
|
| 382 |
-
step=0.1,
|
| 383 |
-
interactive=True,
|
| 384 |
-
visible=False,
|
| 385 |
-
label="Sampling temperature",
|
| 386 |
-
info="Higher values will produce more diverse outputs.",
|
| 387 |
-
)
|
| 388 |
-
top_p = gr.Slider(
|
| 389 |
-
minimum=0.01,
|
| 390 |
-
maximum=0.99,
|
| 391 |
-
value=0.8,
|
| 392 |
-
step=0.01,
|
| 393 |
-
interactive=True,
|
| 394 |
-
visible=False,
|
| 395 |
-
label="Top P",
|
| 396 |
-
info="Higher values is equivalent to sampling more low-probability tokens.",
|
| 397 |
-
)
|
| 398 |
decoding_strategy.change(
|
| 399 |
fn=lambda selection: gr.Slider(
|
| 400 |
visible=(
|
|
@@ -415,8 +398,7 @@ with gr.Blocks() as demo:
|
|
| 415 |
# examples=[{"text": "hello"}, {"text": "hola"}, {"text": "merhaba"}],
|
| 416 |
title="Echo Bot",
|
| 417 |
multimodal=True,
|
| 418 |
-
additional_inputs=[decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p
|
| 419 |
)
|
| 420 |
|
| 421 |
-
|
| 422 |
demo.launch()
|
|
|
|
| 1 |
import copy
|
|
|
|
| 2 |
import os
|
| 3 |
+
import spaces
|
|
|
|
| 4 |
import subprocess
|
| 5 |
import torch
|
|
|
|
| 6 |
|
|
|
|
| 7 |
from threading import Thread
|
| 8 |
+
from typing import List, Tuple
|
| 9 |
from urllib.parse import urlparse
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
import gradio as gr
|
|
|
|
| 13 |
from gradio_client.client import DEFAULT_TEMP_DIR
|
| 14 |
+
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer
|
| 15 |
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
|
| 16 |
from transformers.image_transforms import resize, to_channel_dimension_format
|
| 17 |
|
| 18 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 19 |
|
| 20 |
DEVICE = torch.device("cuda")
|
| 21 |
MODELS = {
|
| 22 |
+
"282 - mix1 fixed - opt 23'000": AutoModelForCausalLM.from_pretrained(
|
| 23 |
"HuggingFaceM4/idefics2",
|
| 24 |
trust_remote_code=True,
|
| 25 |
torch_dtype=torch.bfloat16,
|
| 26 |
token=os.environ["HF_AUTH_TOKEN"],
|
| 27 |
+
revision="a1bc6a2b0f74cde25844144f602dde2808a564d9",
|
| 28 |
+
).to(DEVICE),
|
| 29 |
+
"286 - mix6 tables - opt 20'000": AutoModelForCausalLM.from_pretrained(
|
| 30 |
+
"HuggingFaceM4/idefics2",
|
| 31 |
+
trust_remote_code=True,
|
| 32 |
+
torch_dtype=torch.bfloat16,
|
| 33 |
+
token=os.environ["HF_AUTH_TOKEN"],
|
| 34 |
+
revision="b473d49caa964991b40b79fe7cb27d51d4d023f6",
|
| 35 |
).to(DEVICE),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
# "285 - continued pretraining on text sft - opt 2'000": AutoModelForCausalLM.from_pretrained(
|
| 37 |
# "HuggingFaceM4/idefics2",
|
| 38 |
# trust_remote_code=True,
|
|
|
|
| 235 |
return resulting_list
|
| 236 |
|
| 237 |
|
| 238 |
+
@spaces.GPU(duration=180)
|
| 239 |
def model_inference(
|
| 240 |
user_prompt,
|
| 241 |
chat_history,
|
| 242 |
+
model_selector,
|
| 243 |
decoding_strategy,
|
| 244 |
temperature,
|
| 245 |
max_new_tokens,
|
| 246 |
repetition_penalty,
|
| 247 |
top_p,
|
|
|
|
| 248 |
):
|
| 249 |
if user_prompt["text"].strip() == "" and not user_prompt["files"]:
|
| 250 |
gr.Error("Please input a query and optionally image(s).")
|
|
|
|
| 264 |
streamer = TextIteratorStreamer(
|
| 265 |
PROCESSOR.tokenizer,
|
| 266 |
skip_prompt=True,
|
| 267 |
+
timeout=5.,
|
| 268 |
)
|
| 269 |
|
| 270 |
# Common parameters to all decoding strategies
|
|
|
|
| 291 |
|
| 292 |
# Creating model inputs
|
| 293 |
input_text, images = prompt_list_to_model_input(formated_prompt_list)
|
|
|
|
| 294 |
inputs = create_model_inputs([input_text], [images])
|
| 295 |
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
| 296 |
generation_args.update(inputs)
|
| 297 |
|
| 298 |
+
# # The regular non streaming generation mode
|
| 299 |
+
# _ = generation_args.pop("streamer")
|
| 300 |
+
# generated_ids = MODELS[model_selector].generate(**generation_args)
|
| 301 |
+
# generated_text = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 302 |
+
# return generated_text
|
| 303 |
+
|
| 304 |
thread = Thread(
|
| 305 |
target=MODELS[model_selector].generate,
|
| 306 |
kwargs=generation_args,
|
| 307 |
)
|
|
|
|
| 308 |
thread.start()
|
| 309 |
+
|
| 310 |
print("start generating")
|
| 311 |
+
acc_text = ""
|
| 312 |
+
try:
|
| 313 |
+
for text_token in streamer:
|
| 314 |
+
acc_text += text_token
|
| 315 |
+
yield acc_text
|
| 316 |
+
except Exception as e:
|
| 317 |
+
print("error")
|
| 318 |
+
gr.Error(e)
|
| 319 |
+
print("success")
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
# Hyper-parameters for generation
|
| 323 |
+
max_new_tokens = gr.Slider(
|
| 324 |
+
minimum=8,
|
| 325 |
+
maximum=1024,
|
| 326 |
+
value=512,
|
| 327 |
+
step=1,
|
| 328 |
+
interactive=True,
|
| 329 |
+
label="Maximum number of new tokens to generate",
|
| 330 |
+
)
|
| 331 |
+
repetition_penalty = gr.Slider(
|
| 332 |
+
minimum=0.01,
|
| 333 |
+
maximum=5.0,
|
| 334 |
+
value=1.0,
|
| 335 |
+
step=0.01,
|
| 336 |
+
interactive=True,
|
| 337 |
+
label="Repetition penalty",
|
| 338 |
+
info="1.0 is equivalent to no penalty",
|
| 339 |
+
)
|
| 340 |
+
decoding_strategy = gr.Radio(
|
| 341 |
+
[
|
| 342 |
+
"Greedy",
|
| 343 |
+
"Top P Sampling",
|
| 344 |
+
],
|
| 345 |
+
value="Greedy",
|
| 346 |
+
label="Decoding strategy",
|
| 347 |
+
interactive=True,
|
| 348 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
| 349 |
+
)
|
| 350 |
+
temperature = gr.Slider(
|
| 351 |
+
minimum=0.0,
|
| 352 |
+
maximum=5.0,
|
| 353 |
+
value=0.4,
|
| 354 |
+
step=0.1,
|
| 355 |
+
interactive=True,
|
| 356 |
+
label="Sampling temperature",
|
| 357 |
+
info="Higher values will produce more diverse outputs.",
|
| 358 |
+
)
|
| 359 |
+
top_p = gr.Slider(
|
| 360 |
+
minimum=0.01,
|
| 361 |
+
maximum=0.99,
|
| 362 |
+
value=0.8,
|
| 363 |
+
step=0.01,
|
| 364 |
+
interactive=True,
|
| 365 |
+
label="Top P",
|
| 366 |
+
info="Higher values is equivalent to sampling more low-probability tokens.",
|
| 367 |
+
)
|
| 368 |
|
| 369 |
+
with gr.Blocks(fill_height=True) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
with gr.Row(elem_id="model_selector_row"):
|
| 371 |
model_selector = gr.Dropdown(
|
| 372 |
choices=MODELS.keys(),
|
| 373 |
+
value=list(MODELS.keys())[0],
|
| 374 |
interactive=True,
|
| 375 |
show_label=False,
|
| 376 |
container=False,
|
|
|
|
| 378 |
visible=True,
|
| 379 |
)
|
| 380 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 381 |
decoding_strategy.change(
|
| 382 |
fn=lambda selection: gr.Slider(
|
| 383 |
visible=(
|
|
|
|
| 398 |
# examples=[{"text": "hello"}, {"text": "hola"}, {"text": "merhaba"}],
|
| 399 |
title="Echo Bot",
|
| 400 |
multimodal=True,
|
| 401 |
+
additional_inputs=[model_selector, decoding_strategy, temperature, max_new_tokens, repetition_penalty, top_p],
|
| 402 |
)
|
| 403 |
|
|
|
|
| 404 |
demo.launch()
|