Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,323 +1,5 @@
|
|
| 1 |
#################################################################################################
|
| 2 |
|
| 3 |
-
# import subprocess
|
| 4 |
-
# import sys
|
| 5 |
-
|
| 6 |
-
# import spaces
|
| 7 |
-
# import torch
|
| 8 |
-
|
| 9 |
-
# import gradio as gr
|
| 10 |
-
# from PIL import Image
|
| 11 |
-
# import numpy as np
|
| 12 |
-
# import cv2
|
| 13 |
-
# import pypdfium2 as pdfium
|
| 14 |
-
# from transformers import (
|
| 15 |
-
# LightOnOCRForConditionalGeneration,
|
| 16 |
-
# LightOnOCRProcessor,
|
| 17 |
-
# )
|
| 18 |
-
# from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 19 |
-
# import re
|
| 20 |
-
|
| 21 |
-
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
-
# if device == "cuda":
|
| 23 |
-
# attn_implementation = "sdpa"
|
| 24 |
-
# dtype = torch.bfloat16
|
| 25 |
-
# else:
|
| 26 |
-
# attn_implementation = "eager"
|
| 27 |
-
# dtype = torch.float32
|
| 28 |
-
|
| 29 |
-
# ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
|
| 30 |
-
# "lightonai/LightOnOCR-1B-1025",
|
| 31 |
-
# attn_implementation=attn_implementation,
|
| 32 |
-
# torch_dtype=dtype,
|
| 33 |
-
# trust_remote_code=True,
|
| 34 |
-
# ).to(device).eval()
|
| 35 |
-
|
| 36 |
-
# processor = LightOnOCRProcessor.from_pretrained(
|
| 37 |
-
# "lightonai/LightOnOCR-1B-1025",
|
| 38 |
-
# trust_remote_code=True,
|
| 39 |
-
# )
|
| 40 |
-
|
| 41 |
-
# ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 42 |
-
# ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 43 |
-
# ner_pipeline = pipeline(
|
| 44 |
-
# "ner",
|
| 45 |
-
# model=ner_model,
|
| 46 |
-
# tokenizer=ner_tokenizer,
|
| 47 |
-
# aggregation_strategy="simple",
|
| 48 |
-
# )
|
| 49 |
-
|
| 50 |
-
# def render_pdf_page(page, max_resolution=1540, scale=2.77):
|
| 51 |
-
# width, height = page.get_size()
|
| 52 |
-
# pixel_width = width * scale
|
| 53 |
-
# pixel_height = height * scale
|
| 54 |
-
# resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
|
| 55 |
-
# target_scale = scale * resize_factor
|
| 56 |
-
# return page.render(scale=target_scale, rev_byteorder=True).to_pil()
|
| 57 |
-
|
| 58 |
-
# def process_pdf(pdf_path, page_num=1):
|
| 59 |
-
# pdf = pdfium.PdfDocument(pdf_path)
|
| 60 |
-
# total_pages = len(pdf)
|
| 61 |
-
# page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
|
| 62 |
-
# page = pdf[page_idx]
|
| 63 |
-
# img = render_pdf_page(page)
|
| 64 |
-
# pdf.close()
|
| 65 |
-
# return img, total_pages, page_idx + 1
|
| 66 |
-
|
| 67 |
-
# def clean_output_text(text):
|
| 68 |
-
# markers_to_remove = ["system", "user", "assistant"]
|
| 69 |
-
# lines = text.split('\n')
|
| 70 |
-
# cleaned_lines = []
|
| 71 |
-
# for line in lines:
|
| 72 |
-
# stripped = line.strip()
|
| 73 |
-
# if stripped.lower() not in markers_to_remove:
|
| 74 |
-
# cleaned_lines.append(line)
|
| 75 |
-
# cleaned = '\n'.join(cleaned_lines).strip()
|
| 76 |
-
# if "assistant" in text.lower():
|
| 77 |
-
# parts = text.split("assistant", 1)
|
| 78 |
-
# if len(parts) > 1:
|
| 79 |
-
# cleaned = parts[1].strip()
|
| 80 |
-
# return cleaned
|
| 81 |
-
|
| 82 |
-
# def preprocess_image_for_ocr(image):
|
| 83 |
-
# image_rgb = image.convert("RGB")
|
| 84 |
-
# img_np = np.array(image_rgb)
|
| 85 |
-
# gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
| 86 |
-
# adaptive_threshold = cv2.adaptiveThreshold(
|
| 87 |
-
# gray,
|
| 88 |
-
# 255,
|
| 89 |
-
# cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 90 |
-
# cv2.THRESH_BINARY,
|
| 91 |
-
# 85,
|
| 92 |
-
# 11,
|
| 93 |
-
# )
|
| 94 |
-
# preprocessed_pil = Image.fromarray(adaptive_threshold)
|
| 95 |
-
# return preprocessed_pil
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
# def extract_medication_lines(text):
|
| 100 |
-
# """
|
| 101 |
-
# Extracts medication/drug lines from text using regex.
|
| 102 |
-
# Matches lines beginning with tab, tablet, cap, capsule, syrup, syp, oral, inj, injection, ointment, drops, patch, sol, solution, etc.
|
| 103 |
-
# Handles case-insensitivity and abbreviations like T., C., tab., cap. etc.
|
| 104 |
-
# """
|
| 105 |
-
# # "|" means OR. (?:...) is a non-capturing group.
|
| 106 |
-
# pattern = r"""^\s* # Leading spaces allowed
|
| 107 |
-
# (
|
| 108 |
-
# T\.?|TAB\.?|TABLET # T., T, TAB, TAB., TABLET
|
| 109 |
-
# |C\.?|CAP\.?|CAPSULE # C., C, CAP, CAP., CAPSULE
|
| 110 |
-
# |SYRUP|SYP
|
| 111 |
-
# |ORAL
|
| 112 |
-
# |INJ\.?|INJECTION # INJ., INJ, INJECTION
|
| 113 |
-
# |OINTMENT|DROPS|PATCH|SOL\.?|SOLUTION
|
| 114 |
-
# )
|
| 115 |
-
# \s+[A-Z0-9 \-\(\)/,.]+ # Name/dose/other info (at least one space/letter after the pattern)
|
| 116 |
-
# """
|
| 117 |
-
# # Compile with re.IGNORECASE and re.VERBOSE for readability
|
| 118 |
-
# med_regex = re.compile(pattern, re.IGNORECASE | re.VERBOSE)
|
| 119 |
-
# meds = []
|
| 120 |
-
# for line in text.split('\n'):
|
| 121 |
-
# line = line.strip()
|
| 122 |
-
# if med_regex.match(line):
|
| 123 |
-
# meds.append(line)
|
| 124 |
-
# return '\n'.join(meds)
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
# def extract_meds(text, use_ner):
|
| 128 |
-
# """
|
| 129 |
-
# Switches between Clinical NER or regex extraction.
|
| 130 |
-
# Returns medications string.
|
| 131 |
-
# """
|
| 132 |
-
# if use_ner:
|
| 133 |
-
# entities = ner_pipeline(text)
|
| 134 |
-
# meds = []
|
| 135 |
-
# for ent in entities:
|
| 136 |
-
# if ent["entity_group"] == "treatment":
|
| 137 |
-
# word = ent["word"]
|
| 138 |
-
# if word.startswith("##") and meds:
|
| 139 |
-
# meds[-1] += word[2:]
|
| 140 |
-
# else:
|
| 141 |
-
# meds.append(word)
|
| 142 |
-
# return ", ".join(set(meds)) if meds else "None detected"
|
| 143 |
-
# else:
|
| 144 |
-
# return extract_medication_lines(text) or "None detected"
|
| 145 |
-
|
| 146 |
-
# @spaces.GPU
|
| 147 |
-
# def extract_text_from_image(image, temperature=0.2):
|
| 148 |
-
# """OCR with adaptive thresholding."""
|
| 149 |
-
# processed_img = preprocess_image_for_ocr(image)
|
| 150 |
-
# chat = [
|
| 151 |
-
# {
|
| 152 |
-
# "role": "user",
|
| 153 |
-
# "content": [
|
| 154 |
-
# {"type": "image", "image": processed_img}
|
| 155 |
-
# ],
|
| 156 |
-
# }
|
| 157 |
-
# ]
|
| 158 |
-
# inputs = processor.apply_chat_template(
|
| 159 |
-
# chat,
|
| 160 |
-
# add_generation_prompt=True,
|
| 161 |
-
# tokenize=True,
|
| 162 |
-
# return_dict=True,
|
| 163 |
-
# return_tensors="pt",
|
| 164 |
-
# )
|
| 165 |
-
# # Move inputs to device
|
| 166 |
-
# inputs = {
|
| 167 |
-
# k: (
|
| 168 |
-
# v.to(device=device, dtype=dtype)
|
| 169 |
-
# if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
|
| 170 |
-
# else v.to(device)
|
| 171 |
-
# if isinstance(v, torch.Tensor)
|
| 172 |
-
# else v
|
| 173 |
-
# )
|
| 174 |
-
# for k, v in inputs.items()
|
| 175 |
-
# }
|
| 176 |
-
# generation_kwargs = dict(
|
| 177 |
-
# **inputs,
|
| 178 |
-
# max_new_tokens=2048,
|
| 179 |
-
# temperature=temperature if temperature > 0 else 0.0,
|
| 180 |
-
# use_cache=True,
|
| 181 |
-
# do_sample=temperature > 0,
|
| 182 |
-
# )
|
| 183 |
-
# with torch.no_grad():
|
| 184 |
-
# outputs = ocr_model.generate(**generation_kwargs)
|
| 185 |
-
# output_text = processor.decode(outputs[0], skip_special_tokens=True)
|
| 186 |
-
# cleaned_text = clean_output_text(output_text)
|
| 187 |
-
# yield cleaned_text, output_text, processed_img
|
| 188 |
-
|
| 189 |
-
# def process_input(file_input, temperature, page_num, extraction_mode):
|
| 190 |
-
# if file_input is None:
|
| 191 |
-
# yield "Please upload an image or PDF first.", "", "", "", "No file!", 1
|
| 192 |
-
# return
|
| 193 |
-
|
| 194 |
-
# image_to_process = None
|
| 195 |
-
# page_info = ""
|
| 196 |
-
# slider_value = page_num
|
| 197 |
-
# file_path = file_input if isinstance(file_input, str) else file_input.name
|
| 198 |
-
|
| 199 |
-
# if file_path.lower().endswith(".pdf"):
|
| 200 |
-
# try:
|
| 201 |
-
# image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
|
| 202 |
-
# page_info = f"Processing page {actual_page} of {total_pages}"
|
| 203 |
-
# slider_value = actual_page
|
| 204 |
-
# except Exception as e:
|
| 205 |
-
# msg = f"Error processing PDF: {str(e)}"
|
| 206 |
-
# yield msg, "", msg, "", None, slider_value
|
| 207 |
-
# return
|
| 208 |
-
# else:
|
| 209 |
-
# try:
|
| 210 |
-
# image_to_process = Image.open(file_path)
|
| 211 |
-
# page_info = "Processing image"
|
| 212 |
-
# except Exception as e:
|
| 213 |
-
# msg = f"Error opening image: {str(e)}"
|
| 214 |
-
# yield msg, "", msg, "", None, slider_value
|
| 215 |
-
# return
|
| 216 |
-
|
| 217 |
-
# use_ner = extraction_mode == "Regex" #"Clinical NER"
|
| 218 |
-
# try:
|
| 219 |
-
# for cleaned_text, raw_md, processed_img in extract_text_from_image(
|
| 220 |
-
# image_to_process, temperature
|
| 221 |
-
# ):
|
| 222 |
-
# meds_out = extract_meds(cleaned_text, use_ner)
|
| 223 |
-
# yield cleaned_text, meds_out, raw_md, page_info, processed_img, slider_value
|
| 224 |
-
# except Exception as e:
|
| 225 |
-
# error_msg = f"Error during text extraction: {str(e)}"
|
| 226 |
-
# yield error_msg, "", error_msg, page_info, image_to_process, slider_value
|
| 227 |
-
|
| 228 |
-
# def update_slider(file_input):
|
| 229 |
-
# if file_input is None:
|
| 230 |
-
# return gr.update(maximum=20, value=1)
|
| 231 |
-
# file_path = file_input if isinstance(file_input, str) else file_input.name
|
| 232 |
-
# if file_path.lower().endswith('.pdf'):
|
| 233 |
-
# try:
|
| 234 |
-
# pdf = pdfium.PdfDocument(file_path)
|
| 235 |
-
# total_pages = len(pdf)
|
| 236 |
-
# pdf.close()
|
| 237 |
-
# return gr.update(maximum=total_pages, value=1)
|
| 238 |
-
# except:
|
| 239 |
-
# return gr.update(maximum=20, value=1)
|
| 240 |
-
# else:
|
| 241 |
-
# return gr.update(maximum=1, value=1)
|
| 242 |
-
|
| 243 |
-
# with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo:
|
| 244 |
-
# file_input = gr.File(
|
| 245 |
-
# label="🖼️ Upload Image or PDF",
|
| 246 |
-
# file_types=[".pdf", ".png", ".jpg", ".jpeg"],
|
| 247 |
-
# type="filepath"
|
| 248 |
-
# )
|
| 249 |
-
# temperature = gr.Slider(
|
| 250 |
-
# minimum=0.0,
|
| 251 |
-
# maximum=1.0,
|
| 252 |
-
# value=0.2,
|
| 253 |
-
# step=0.05,
|
| 254 |
-
# label="Temperature"
|
| 255 |
-
# )
|
| 256 |
-
# page_slider = gr.Slider(
|
| 257 |
-
# minimum=1, maximum=20, value=1, step=1,
|
| 258 |
-
# label="Page Number (PDF only)",
|
| 259 |
-
# interactive=True
|
| 260 |
-
# )
|
| 261 |
-
# extraction_mode = gr.Radio(
|
| 262 |
-
# choices=["Clinical NER", "Regex"],
|
| 263 |
-
# value="Regex",
|
| 264 |
-
# label="Extraction Method",
|
| 265 |
-
# info="Clinical NER uses ML, Regex uses rules"
|
| 266 |
-
# )
|
| 267 |
-
# output_text = gr.Textbox(
|
| 268 |
-
# label="📝 Extracted Text",
|
| 269 |
-
# lines=4,
|
| 270 |
-
# max_lines=10,
|
| 271 |
-
# interactive=False,
|
| 272 |
-
# show_copy_button=True
|
| 273 |
-
# )
|
| 274 |
-
# medicines_output = gr.Textbox(
|
| 275 |
-
# label="💊 Extracted Medicines/Drugs",
|
| 276 |
-
# placeholder="Medicine/drug names will appear here...",
|
| 277 |
-
# lines=2,
|
| 278 |
-
# max_lines=10,
|
| 279 |
-
# interactive=False,
|
| 280 |
-
# show_copy_button=True
|
| 281 |
-
# )
|
| 282 |
-
# raw_output = gr.Textbox(
|
| 283 |
-
# label="Raw Model Output",
|
| 284 |
-
# lines=2,
|
| 285 |
-
# max_lines=5,
|
| 286 |
-
# interactive=False
|
| 287 |
-
# )
|
| 288 |
-
# page_info = gr.Markdown(
|
| 289 |
-
# value="" # Info of PDF page
|
| 290 |
-
# )
|
| 291 |
-
# rendered_image = gr.Image(
|
| 292 |
-
# label="Processed Image (Thresholded for OCR)",
|
| 293 |
-
# interactive=False
|
| 294 |
-
# )
|
| 295 |
-
# num_pages = gr.Number(
|
| 296 |
-
# value=1, label="Current Page (slider)", visible=False
|
| 297 |
-
# )
|
| 298 |
-
# submit_btn = gr.Button("Extract Medicines", variant="primary")
|
| 299 |
-
|
| 300 |
-
# submit_btn.click(
|
| 301 |
-
# fn=process_input,
|
| 302 |
-
# inputs=[file_input, temperature, page_slider, extraction_mode],
|
| 303 |
-
# outputs=[output_text, medicines_output, raw_output, page_info, rendered_image, num_pages]
|
| 304 |
-
# )
|
| 305 |
-
|
| 306 |
-
# file_input.change(
|
| 307 |
-
# fn=update_slider,
|
| 308 |
-
# inputs=[file_input],
|
| 309 |
-
# outputs=[page_slider]
|
| 310 |
-
# )
|
| 311 |
-
|
| 312 |
-
# if __name__ == "__main__":
|
| 313 |
-
# demo.launch()
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
#################################################### running code only NER #######################
|
| 318 |
-
|
| 319 |
-
#!/usr/bin/env python3
|
| 320 |
-
|
| 321 |
import subprocess
|
| 322 |
import sys
|
| 323 |
|
|
@@ -334,6 +16,7 @@ from transformers import (
|
|
| 334 |
LightOnOCRProcessor,
|
| 335 |
)
|
| 336 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
|
|
|
| 337 |
|
| 338 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 339 |
if device == "cuda":
|
|
@@ -397,7 +80,6 @@ def clean_output_text(text):
|
|
| 397 |
return cleaned
|
| 398 |
|
| 399 |
def preprocess_image_for_ocr(image):
|
| 400 |
-
"""Convert PIL.Image to adaptive thresholded image for OCR."""
|
| 401 |
image_rgb = image.convert("RGB")
|
| 402 |
img_np = np.array(image_rgb)
|
| 403 |
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
|
@@ -412,9 +94,58 @@ def preprocess_image_for_ocr(image):
|
|
| 412 |
preprocessed_pil = Image.fromarray(adaptive_threshold)
|
| 413 |
return preprocessed_pil
|
| 414 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
@spaces.GPU
|
| 416 |
def extract_text_from_image(image, temperature=0.2):
|
| 417 |
-
"""OCR
|
| 418 |
processed_img = preprocess_image_for_ocr(image)
|
| 419 |
chat = [
|
| 420 |
{
|
|
@@ -451,22 +182,11 @@ def extract_text_from_image(image, temperature=0.2):
|
|
| 451 |
)
|
| 452 |
with torch.no_grad():
|
| 453 |
outputs = ocr_model.generate(**generation_kwargs)
|
| 454 |
-
|
| 455 |
output_text = processor.decode(outputs[0], skip_special_tokens=True)
|
| 456 |
cleaned_text = clean_output_text(output_text)
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
if ent["entity_group"] == "treatment":
|
| 461 |
-
word = ent["word"]
|
| 462 |
-
if word.startswith("##") and medications:
|
| 463 |
-
medications[-1] += word[2:]
|
| 464 |
-
else:
|
| 465 |
-
medications.append(word)
|
| 466 |
-
medications_str = ", ".join(set(medications)) if medications else "None detected"
|
| 467 |
-
yield cleaned_text, medications_str, output_text, processed_img
|
| 468 |
-
|
| 469 |
-
def process_input(file_input, temperature, page_num):
|
| 470 |
if file_input is None:
|
| 471 |
yield "Please upload an image or PDF first.", "", "", "", "No file!", 1
|
| 472 |
return
|
|
@@ -494,11 +214,13 @@ def process_input(file_input, temperature, page_num):
|
|
| 494 |
yield msg, "", msg, "", None, slider_value
|
| 495 |
return
|
| 496 |
|
|
|
|
| 497 |
try:
|
| 498 |
-
for cleaned_text,
|
| 499 |
image_to_process, temperature
|
| 500 |
):
|
| 501 |
-
|
|
|
|
| 502 |
except Exception as e:
|
| 503 |
error_msg = f"Error during text extraction: {str(e)}"
|
| 504 |
yield error_msg, "", error_msg, page_info, image_to_process, slider_value
|
|
@@ -536,6 +258,12 @@ with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo
|
|
| 536 |
label="Page Number (PDF only)",
|
| 537 |
interactive=True
|
| 538 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 539 |
output_text = gr.Textbox(
|
| 540 |
label="📝 Extracted Text",
|
| 541 |
lines=4,
|
|
@@ -547,7 +275,7 @@ with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo
|
|
| 547 |
label="💊 Extracted Medicines/Drugs",
|
| 548 |
placeholder="Medicine/drug names will appear here...",
|
| 549 |
lines=2,
|
| 550 |
-
max_lines=
|
| 551 |
interactive=False,
|
| 552 |
show_copy_button=True
|
| 553 |
)
|
|
@@ -558,7 +286,7 @@ with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo
|
|
| 558 |
interactive=False
|
| 559 |
)
|
| 560 |
page_info = gr.Markdown(
|
| 561 |
-
value=""
|
| 562 |
)
|
| 563 |
rendered_image = gr.Image(
|
| 564 |
label="Processed Image (Thresholded for OCR)",
|
|
@@ -571,7 +299,7 @@ with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo
|
|
| 571 |
|
| 572 |
submit_btn.click(
|
| 573 |
fn=process_input,
|
| 574 |
-
inputs=[file_input, temperature, page_slider],
|
| 575 |
outputs=[output_text, medicines_output, raw_output, page_info, rendered_image, num_pages]
|
| 576 |
)
|
| 577 |
|
|
@@ -586,6 +314,278 @@ if __name__ == "__main__":
|
|
| 586 |
|
| 587 |
|
| 588 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 589 |
|
| 590 |
########################################## #############################################################
|
| 591 |
|
|
|
|
| 1 |
#################################################################################################
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import subprocess
|
| 4 |
import sys
|
| 5 |
|
|
|
|
| 16 |
LightOnOCRProcessor,
|
| 17 |
)
|
| 18 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 19 |
+
import re
|
| 20 |
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
if device == "cuda":
|
|
|
|
| 80 |
return cleaned
|
| 81 |
|
| 82 |
def preprocess_image_for_ocr(image):
|
|
|
|
| 83 |
image_rgb = image.convert("RGB")
|
| 84 |
img_np = np.array(image_rgb)
|
| 85 |
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
|
|
|
| 94 |
preprocessed_pil = Image.fromarray(adaptive_threshold)
|
| 95 |
return preprocessed_pil
|
| 96 |
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
def extract_medication_lines(text):
|
| 100 |
+
"""
|
| 101 |
+
Extracts medication/drug lines from text using regex.
|
| 102 |
+
Matches lines beginning with tab, tablet, cap, capsule, syrup, syp, oral, inj, injection, ointment, drops, patch, sol, solution, etc.
|
| 103 |
+
Handles case-insensitivity and abbreviations like T., C., tab., cap. etc.
|
| 104 |
+
"""
|
| 105 |
+
# "|" means OR. (?:...) is a non-capturing group.
|
| 106 |
+
pattern = r"""^\s* # Leading spaces allowed
|
| 107 |
+
(
|
| 108 |
+
T\.?|TAB\.?|TABLET # T., T, TAB, TAB., TABLET
|
| 109 |
+
|C\.?|CAP\.?|CAPSULE # C., C, CAP, CAP., CAPSULE
|
| 110 |
+
|SYRUP|SYP
|
| 111 |
+
|ORAL
|
| 112 |
+
|INJ\.?|INJECTION # INJ., INJ, INJECTION
|
| 113 |
+
|OINTMENT|DROPS|PATCH|SOL\.?|SOLUTION
|
| 114 |
+
)
|
| 115 |
+
\s+[A-Z0-9 \-\(\)/,.]+ # Name/dose/other info (at least one space/letter after the pattern)
|
| 116 |
+
"""
|
| 117 |
+
# Compile with re.IGNORECASE and re.VERBOSE for readability
|
| 118 |
+
med_regex = re.compile(pattern, re.IGNORECASE | re.VERBOSE)
|
| 119 |
+
meds = []
|
| 120 |
+
for line in text.split('\n'):
|
| 121 |
+
line = line.strip()
|
| 122 |
+
if med_regex.match(line):
|
| 123 |
+
meds.append(line)
|
| 124 |
+
return '\n'.join(meds)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
def extract_meds(text, use_ner):
|
| 128 |
+
"""
|
| 129 |
+
Switches between Clinical NER or regex extraction.
|
| 130 |
+
Returns medications string.
|
| 131 |
+
"""
|
| 132 |
+
if use_ner:
|
| 133 |
+
entities = ner_pipeline(text)
|
| 134 |
+
meds = []
|
| 135 |
+
for ent in entities:
|
| 136 |
+
if ent["entity_group"] == "treatment":
|
| 137 |
+
word = ent["word"]
|
| 138 |
+
if word.startswith("##") and meds:
|
| 139 |
+
meds[-1] += word[2:]
|
| 140 |
+
else:
|
| 141 |
+
meds.append(word)
|
| 142 |
+
return ", ".join(set(meds)) if meds else "None detected"
|
| 143 |
+
else:
|
| 144 |
+
return extract_medication_lines(text) or "None detected"
|
| 145 |
+
|
| 146 |
@spaces.GPU
|
| 147 |
def extract_text_from_image(image, temperature=0.2):
|
| 148 |
+
"""OCR with adaptive thresholding."""
|
| 149 |
processed_img = preprocess_image_for_ocr(image)
|
| 150 |
chat = [
|
| 151 |
{
|
|
|
|
| 182 |
)
|
| 183 |
with torch.no_grad():
|
| 184 |
outputs = ocr_model.generate(**generation_kwargs)
|
|
|
|
| 185 |
output_text = processor.decode(outputs[0], skip_special_tokens=True)
|
| 186 |
cleaned_text = clean_output_text(output_text)
|
| 187 |
+
yield cleaned_text, output_text, processed_img
|
| 188 |
+
|
| 189 |
+
def process_input(file_input, temperature, page_num, extraction_mode):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
if file_input is None:
|
| 191 |
yield "Please upload an image or PDF first.", "", "", "", "No file!", 1
|
| 192 |
return
|
|
|
|
| 214 |
yield msg, "", msg, "", None, slider_value
|
| 215 |
return
|
| 216 |
|
| 217 |
+
use_ner = extraction_mode == "Regex" #"Clinical NER"
|
| 218 |
try:
|
| 219 |
+
for cleaned_text, raw_md, processed_img in extract_text_from_image(
|
| 220 |
image_to_process, temperature
|
| 221 |
):
|
| 222 |
+
meds_out = extract_meds(cleaned_text, use_ner)
|
| 223 |
+
yield cleaned_text, meds_out, raw_md, page_info, processed_img, slider_value
|
| 224 |
except Exception as e:
|
| 225 |
error_msg = f"Error during text extraction: {str(e)}"
|
| 226 |
yield error_msg, "", error_msg, page_info, image_to_process, slider_value
|
|
|
|
| 258 |
label="Page Number (PDF only)",
|
| 259 |
interactive=True
|
| 260 |
)
|
| 261 |
+
extraction_mode = gr.Radio(
|
| 262 |
+
choices=["Clinical NER", "Regex"],
|
| 263 |
+
value="Regex",
|
| 264 |
+
label="Extraction Method",
|
| 265 |
+
info="Clinical NER uses ML, Regex uses rules"
|
| 266 |
+
)
|
| 267 |
output_text = gr.Textbox(
|
| 268 |
label="📝 Extracted Text",
|
| 269 |
lines=4,
|
|
|
|
| 275 |
label="💊 Extracted Medicines/Drugs",
|
| 276 |
placeholder="Medicine/drug names will appear here...",
|
| 277 |
lines=2,
|
| 278 |
+
max_lines=10,
|
| 279 |
interactive=False,
|
| 280 |
show_copy_button=True
|
| 281 |
)
|
|
|
|
| 286 |
interactive=False
|
| 287 |
)
|
| 288 |
page_info = gr.Markdown(
|
| 289 |
+
value="" # Info of PDF page
|
| 290 |
)
|
| 291 |
rendered_image = gr.Image(
|
| 292 |
label="Processed Image (Thresholded for OCR)",
|
|
|
|
| 299 |
|
| 300 |
submit_btn.click(
|
| 301 |
fn=process_input,
|
| 302 |
+
inputs=[file_input, temperature, page_slider, extraction_mode],
|
| 303 |
outputs=[output_text, medicines_output, raw_output, page_info, rendered_image, num_pages]
|
| 304 |
)
|
| 305 |
|
|
|
|
| 314 |
|
| 315 |
|
| 316 |
|
| 317 |
+
#################################################### running code only NER #######################
|
| 318 |
+
|
| 319 |
+
#!/usr/bin/env python3
|
| 320 |
+
|
| 321 |
+
# import subprocess
|
| 322 |
+
# import sys
|
| 323 |
+
|
| 324 |
+
# import spaces
|
| 325 |
+
# import torch
|
| 326 |
+
|
| 327 |
+
# import gradio as gr
|
| 328 |
+
# from PIL import Image
|
| 329 |
+
# import numpy as np
|
| 330 |
+
# import cv2
|
| 331 |
+
# import pypdfium2 as pdfium
|
| 332 |
+
# from transformers import (
|
| 333 |
+
# LightOnOCRForConditionalGeneration,
|
| 334 |
+
# LightOnOCRProcessor,
|
| 335 |
+
# )
|
| 336 |
+
# from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 337 |
+
|
| 338 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 339 |
+
# if device == "cuda":
|
| 340 |
+
# attn_implementation = "sdpa"
|
| 341 |
+
# dtype = torch.bfloat16
|
| 342 |
+
# else:
|
| 343 |
+
# attn_implementation = "eager"
|
| 344 |
+
# dtype = torch.float32
|
| 345 |
+
|
| 346 |
+
# ocr_model = LightOnOCRForConditionalGeneration.from_pretrained(
|
| 347 |
+
# "lightonai/LightOnOCR-1B-1025",
|
| 348 |
+
# attn_implementation=attn_implementation,
|
| 349 |
+
# torch_dtype=dtype,
|
| 350 |
+
# trust_remote_code=True,
|
| 351 |
+
# ).to(device).eval()
|
| 352 |
+
|
| 353 |
+
# processor = LightOnOCRProcessor.from_pretrained(
|
| 354 |
+
# "lightonai/LightOnOCR-1B-1025",
|
| 355 |
+
# trust_remote_code=True,
|
| 356 |
+
# )
|
| 357 |
+
|
| 358 |
+
# ner_tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 359 |
+
# ner_model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 360 |
+
# ner_pipeline = pipeline(
|
| 361 |
+
# "ner",
|
| 362 |
+
# model=ner_model,
|
| 363 |
+
# tokenizer=ner_tokenizer,
|
| 364 |
+
# aggregation_strategy="simple",
|
| 365 |
+
# )
|
| 366 |
+
|
| 367 |
+
# def render_pdf_page(page, max_resolution=1540, scale=2.77):
|
| 368 |
+
# width, height = page.get_size()
|
| 369 |
+
# pixel_width = width * scale
|
| 370 |
+
# pixel_height = height * scale
|
| 371 |
+
# resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
|
| 372 |
+
# target_scale = scale * resize_factor
|
| 373 |
+
# return page.render(scale=target_scale, rev_byteorder=True).to_pil()
|
| 374 |
+
|
| 375 |
+
# def process_pdf(pdf_path, page_num=1):
|
| 376 |
+
# pdf = pdfium.PdfDocument(pdf_path)
|
| 377 |
+
# total_pages = len(pdf)
|
| 378 |
+
# page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
|
| 379 |
+
# page = pdf[page_idx]
|
| 380 |
+
# img = render_pdf_page(page)
|
| 381 |
+
# pdf.close()
|
| 382 |
+
# return img, total_pages, page_idx + 1
|
| 383 |
+
|
| 384 |
+
# def clean_output_text(text):
|
| 385 |
+
# markers_to_remove = ["system", "user", "assistant"]
|
| 386 |
+
# lines = text.split('\n')
|
| 387 |
+
# cleaned_lines = []
|
| 388 |
+
# for line in lines:
|
| 389 |
+
# stripped = line.strip()
|
| 390 |
+
# if stripped.lower() not in markers_to_remove:
|
| 391 |
+
# cleaned_lines.append(line)
|
| 392 |
+
# cleaned = '\n'.join(cleaned_lines).strip()
|
| 393 |
+
# if "assistant" in text.lower():
|
| 394 |
+
# parts = text.split("assistant", 1)
|
| 395 |
+
# if len(parts) > 1:
|
| 396 |
+
# cleaned = parts[1].strip()
|
| 397 |
+
# return cleaned
|
| 398 |
+
|
| 399 |
+
# def preprocess_image_for_ocr(image):
|
| 400 |
+
# """Convert PIL.Image to adaptive thresholded image for OCR."""
|
| 401 |
+
# image_rgb = image.convert("RGB")
|
| 402 |
+
# img_np = np.array(image_rgb)
|
| 403 |
+
# gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
|
| 404 |
+
# adaptive_threshold = cv2.adaptiveThreshold(
|
| 405 |
+
# gray,
|
| 406 |
+
# 255,
|
| 407 |
+
# cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
|
| 408 |
+
# cv2.THRESH_BINARY,
|
| 409 |
+
# 85,
|
| 410 |
+
# 35,
|
| 411 |
+
# )
|
| 412 |
+
# preprocessed_pil = Image.fromarray(adaptive_threshold)
|
| 413 |
+
# return preprocessed_pil
|
| 414 |
+
|
| 415 |
+
# @spaces.GPU
|
| 416 |
+
# def extract_text_from_image(image, temperature=0.2):
|
| 417 |
+
# """OCR + clinical NER, with preprocessing."""
|
| 418 |
+
# processed_img = preprocess_image_for_ocr(image)
|
| 419 |
+
# chat = [
|
| 420 |
+
# {
|
| 421 |
+
# "role": "user",
|
| 422 |
+
# "content": [
|
| 423 |
+
# {"type": "image", "image": processed_img}
|
| 424 |
+
# ],
|
| 425 |
+
# }
|
| 426 |
+
# ]
|
| 427 |
+
# inputs = processor.apply_chat_template(
|
| 428 |
+
# chat,
|
| 429 |
+
# add_generation_prompt=True,
|
| 430 |
+
# tokenize=True,
|
| 431 |
+
# return_dict=True,
|
| 432 |
+
# return_tensors="pt",
|
| 433 |
+
# )
|
| 434 |
+
# # Move inputs to device
|
| 435 |
+
# inputs = {
|
| 436 |
+
# k: (
|
| 437 |
+
# v.to(device=device, dtype=dtype)
|
| 438 |
+
# if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
|
| 439 |
+
# else v.to(device)
|
| 440 |
+
# if isinstance(v, torch.Tensor)
|
| 441 |
+
# else v
|
| 442 |
+
# )
|
| 443 |
+
# for k, v in inputs.items()
|
| 444 |
+
# }
|
| 445 |
+
# generation_kwargs = dict(
|
| 446 |
+
# **inputs,
|
| 447 |
+
# max_new_tokens=2048,
|
| 448 |
+
# temperature=temperature if temperature > 0 else 0.0,
|
| 449 |
+
# use_cache=True,
|
| 450 |
+
# do_sample=temperature > 0,
|
| 451 |
+
# )
|
| 452 |
+
# with torch.no_grad():
|
| 453 |
+
# outputs = ocr_model.generate(**generation_kwargs)
|
| 454 |
+
|
| 455 |
+
# output_text = processor.decode(outputs[0], skip_special_tokens=True)
|
| 456 |
+
# cleaned_text = clean_output_text(output_text)
|
| 457 |
+
# entities = ner_pipeline(cleaned_text)
|
| 458 |
+
# medications = []
|
| 459 |
+
# for ent in entities:
|
| 460 |
+
# if ent["entity_group"] == "treatment":
|
| 461 |
+
# word = ent["word"]
|
| 462 |
+
# if word.startswith("##") and medications:
|
| 463 |
+
# medications[-1] += word[2:]
|
| 464 |
+
# else:
|
| 465 |
+
# medications.append(word)
|
| 466 |
+
# medications_str = ", ".join(set(medications)) if medications else "None detected"
|
| 467 |
+
# yield cleaned_text, medications_str, output_text, processed_img
|
| 468 |
+
|
| 469 |
+
# def process_input(file_input, temperature, page_num):
|
| 470 |
+
# if file_input is None:
|
| 471 |
+
# yield "Please upload an image or PDF first.", "", "", "", "No file!", 1
|
| 472 |
+
# return
|
| 473 |
+
|
| 474 |
+
# image_to_process = None
|
| 475 |
+
# page_info = ""
|
| 476 |
+
# slider_value = page_num
|
| 477 |
+
# file_path = file_input if isinstance(file_input, str) else file_input.name
|
| 478 |
+
|
| 479 |
+
# if file_path.lower().endswith(".pdf"):
|
| 480 |
+
# try:
|
| 481 |
+
# image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
|
| 482 |
+
# page_info = f"Processing page {actual_page} of {total_pages}"
|
| 483 |
+
# slider_value = actual_page
|
| 484 |
+
# except Exception as e:
|
| 485 |
+
# msg = f"Error processing PDF: {str(e)}"
|
| 486 |
+
# yield msg, "", msg, "", None, slider_value
|
| 487 |
+
# return
|
| 488 |
+
# else:
|
| 489 |
+
# try:
|
| 490 |
+
# image_to_process = Image.open(file_path)
|
| 491 |
+
# page_info = "Processing image"
|
| 492 |
+
# except Exception as e:
|
| 493 |
+
# msg = f"Error opening image: {str(e)}"
|
| 494 |
+
# yield msg, "", msg, "", None, slider_value
|
| 495 |
+
# return
|
| 496 |
+
|
| 497 |
+
# try:
|
| 498 |
+
# for cleaned_text, medications, raw_md, processed_img in extract_text_from_image(
|
| 499 |
+
# image_to_process, temperature
|
| 500 |
+
# ):
|
| 501 |
+
# yield cleaned_text, medications, raw_md, page_info, processed_img, slider_value
|
| 502 |
+
# except Exception as e:
|
| 503 |
+
# error_msg = f"Error during text extraction: {str(e)}"
|
| 504 |
+
# yield error_msg, "", error_msg, page_info, image_to_process, slider_value
|
| 505 |
+
|
| 506 |
+
# def update_slider(file_input):
|
| 507 |
+
# if file_input is None:
|
| 508 |
+
# return gr.update(maximum=20, value=1)
|
| 509 |
+
# file_path = file_input if isinstance(file_input, str) else file_input.name
|
| 510 |
+
# if file_path.lower().endswith('.pdf'):
|
| 511 |
+
# try:
|
| 512 |
+
# pdf = pdfium.PdfDocument(file_path)
|
| 513 |
+
# total_pages = len(pdf)
|
| 514 |
+
# pdf.close()
|
| 515 |
+
# return gr.update(maximum=total_pages, value=1)
|
| 516 |
+
# except:
|
| 517 |
+
# return gr.update(maximum=20, value=1)
|
| 518 |
+
# else:
|
| 519 |
+
# return gr.update(maximum=1, value=1)
|
| 520 |
+
|
| 521 |
+
# with gr.Blocks(title="💊 Medicine Extraction", theme=gr.themes.Soft()) as demo:
|
| 522 |
+
# file_input = gr.File(
|
| 523 |
+
# label="🖼️ Upload Image or PDF",
|
| 524 |
+
# file_types=[".pdf", ".png", ".jpg", ".jpeg"],
|
| 525 |
+
# type="filepath"
|
| 526 |
+
# )
|
| 527 |
+
# temperature = gr.Slider(
|
| 528 |
+
# minimum=0.0,
|
| 529 |
+
# maximum=1.0,
|
| 530 |
+
# value=0.2,
|
| 531 |
+
# step=0.05,
|
| 532 |
+
# label="Temperature"
|
| 533 |
+
# )
|
| 534 |
+
# page_slider = gr.Slider(
|
| 535 |
+
# minimum=1, maximum=20, value=1, step=1,
|
| 536 |
+
# label="Page Number (PDF only)",
|
| 537 |
+
# interactive=True
|
| 538 |
+
# )
|
| 539 |
+
# output_text = gr.Textbox(
|
| 540 |
+
# label="📝 Extracted Text",
|
| 541 |
+
# lines=4,
|
| 542 |
+
# max_lines=10,
|
| 543 |
+
# interactive=False,
|
| 544 |
+
# show_copy_button=True
|
| 545 |
+
# )
|
| 546 |
+
# medicines_output = gr.Textbox(
|
| 547 |
+
# label="💊 Extracted Medicines/Drugs",
|
| 548 |
+
# placeholder="Medicine/drug names will appear here...",
|
| 549 |
+
# lines=2,
|
| 550 |
+
# max_lines=5,
|
| 551 |
+
# interactive=False,
|
| 552 |
+
# show_copy_button=True
|
| 553 |
+
# )
|
| 554 |
+
# raw_output = gr.Textbox(
|
| 555 |
+
# label="Raw Model Output",
|
| 556 |
+
# lines=2,
|
| 557 |
+
# max_lines=5,
|
| 558 |
+
# interactive=False
|
| 559 |
+
# )
|
| 560 |
+
# page_info = gr.Markdown(
|
| 561 |
+
# value="" # Info of PDF page
|
| 562 |
+
# )
|
| 563 |
+
# rendered_image = gr.Image(
|
| 564 |
+
# label="Processed Image (Thresholded for OCR)",
|
| 565 |
+
# interactive=False
|
| 566 |
+
# )
|
| 567 |
+
# num_pages = gr.Number(
|
| 568 |
+
# value=1, label="Current Page (slider)", visible=False
|
| 569 |
+
# )
|
| 570 |
+
# submit_btn = gr.Button("Extract Medicines", variant="primary")
|
| 571 |
+
|
| 572 |
+
# submit_btn.click(
|
| 573 |
+
# fn=process_input,
|
| 574 |
+
# inputs=[file_input, temperature, page_slider],
|
| 575 |
+
# outputs=[output_text, medicines_output, raw_output, page_info, rendered_image, num_pages]
|
| 576 |
+
# )
|
| 577 |
+
|
| 578 |
+
# file_input.change(
|
| 579 |
+
# fn=update_slider,
|
| 580 |
+
# inputs=[file_input],
|
| 581 |
+
# outputs=[page_slider]
|
| 582 |
+
# )
|
| 583 |
+
|
| 584 |
+
# if __name__ == "__main__":
|
| 585 |
+
# demo.launch()
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
|
| 589 |
|
| 590 |
########################################## #############################################################
|
| 591 |
|