File size: 7,264 Bytes
d7872a8 c73412a d7872a8 c73412a d7872a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
#!/usr/bin/env python3
"""
Fine-tune Zephyr 7B on CyberSecurity Dataset Collection
Runs on Hugging Face Spaces infrastructure
"""
import os
import torch
from datasets import load_dataset, concatenate_datasets
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
TrainingArguments,
Trainer,
DataCollatorForLanguageModeling
)
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from huggingface_hub import login
# Configuration
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
OUTPUT_MODEL_NAME = "Jcalemcg/zephyr-7b-cybersecurity-finetuned"
# CyberSecurity datasets from thelordofweb collection
CYBERSECURITY_DATASETS = [
"AlicanKiraz0/All-CVE-Records-Training-Dataset",
"AlicanKiraz0/Cybersecurity-Dataset-v1",
"Bouquets/Cybersecurity-LLM-CVE",
"CyberNative/CyberSecurityEval",
"Mohabahmed03/Alpaca_Dataset_CyberSecurity_Smaller",
"CyberNative/github_cybersecurity_READMEs",
"AlicanKiraz0/Cybersecurity-Dataset-Heimdall-v1.1",
"jcordon5/cybersecurity-rules",
"Bouquets/DeepSeek-V3-Distill-Cybersecurity-en",
"Seerene/cybersecurity_dataset",
"ahmedds10/finetuning_alpaca_Cybersecurity",
"Tiamz/cybersecurity-instruction-dataset",
"OhWayTee/Cybersecurity-News_3",
"Trendyol/All-CVE-Chat-MultiTurn-1999-2025-Dataset",
"Vanessasml/cyber-reports-news-analysis-llama2-3k",
"Vanessasml/cybersecurity_32k_instruction_input_output",
"Vanessasml/enisa_cyber_news_dataset",
"Trendyol/Trendyol-Cybersecurity-Instruction-Tuning-Dataset"
]
def format_instruction(example):
"""Format examples into Zephyr chat format"""
if "instruction" in example and "output" in example:
prompt = f"<|user|>\n{example['instruction']}"
if example.get("input", "").strip():
prompt += f"\n{example['input']}"
prompt += f"</s>\n<|assistant|>\n{example['output']}</s>"
return {"text": prompt}
elif "question" in example and "answer" in example:
return {"text": f"<|user|>\n{example['question']}</s>\n<|assistant|>\n{example['answer']}</s>"}
elif "prompt" in example and "completion" in example:
return {"text": f"<|user|>\n{example['prompt']}</s>\n<|assistant|>\n{example['completion']}</s>"}
elif "text" in example:
return {"text": example["text"]}
elif "messages" in example:
formatted_text = ""
for msg in example["messages"]:
role = msg.get("role", "")
content = msg.get("content", "")
if role == "user":
formatted_text += f"<|user|>\n{content}</s>\n"
elif role == "assistant":
formatted_text += f"<|assistant|>\n{content}</s>\n"
return {"text": formatted_text}
return {"text": str(example)}
def load_datasets():
"""Load and prepare cybersecurity datasets"""
print("=" * 70)
print("LOADING CYBERSECURITY DATASETS")
print("=" * 70)
all_datasets = []
for dataset_name in CYBERSECURITY_DATASETS:
try:
print(f"\nLoading: {dataset_name}")
dataset = load_dataset(dataset_name, split="train", trust_remote_code=True)
formatted = dataset.map(
format_instruction,
remove_columns=dataset.column_names,
desc="Formatting"
)
if len(formatted) > 10000:
formatted = formatted.shuffle(seed=42).select(range(10000))
all_datasets.append(formatted)
print(f"β {len(formatted)} examples loaded")
except Exception as e:
print(f"β Failed: {e}")
combined = concatenate_datasets(all_datasets)
print(f"\n{'='*70}")
print(f"TOTAL DATASET SIZE: {len(combined):,} examples")
print(f"{'='*70}\n")
combined = combined.shuffle(seed=42)
return combined.train_test_split(test_size=0.05, seed=42)
def setup_model():
"""Setup model with QLoRA"""
print("Setting up Zephyr 7B with QLoRA...")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right"
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
)
model = prepare_model_for_kbit_training(model)
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, tokenizer
def main():
print("\n" + "=" * 70)
print("ZEPHYR 7B CYBERSECURITY FINE-TUNING")
print("=" * 70 + "\n")
# Login to Hugging Face
hf_token = os.getenv("HF_TOKEN")
if hf_token:
print("Logging in to Hugging Face...")
login(token=hf_token)
print("β Logged in successfully\n")
else:
print("Warning: HF_TOKEN not found in environment")
# Load data
datasets = load_datasets()
train_data = datasets["train"]
eval_data = datasets["test"]
# Setup model
model, tokenizer = setup_model()
# Tokenize
print("\nTokenizing datasets...")
def tokenize(examples):
return tokenizer(examples["text"], truncation=True, max_length=2048, padding="max_length")
train_data = train_data.map(tokenize, batched=True, remove_columns=train_data.column_names)
eval_data = eval_data.map(tokenize, batched=True, remove_columns=eval_data.column_names)
# Training config
training_args = TrainingArguments(
output_dir="./output",
num_train_epochs=3,
per_device_train_batch_size=4,
per_device_eval_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=2e-4,
fp16=True,
save_strategy="steps",
save_steps=500,
eval_strategy="steps",
eval_steps=500,
logging_steps=50,
warmup_steps=100,
lr_scheduler_type="cosine",
optim="paged_adamw_8bit",
save_total_limit=3,
load_best_model_at_end=True,
push_to_hub=True,
hub_model_id=OUTPUT_MODEL_NAME,
hub_strategy="every_save",
report_to="tensorboard",
)
# Train
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_data,
eval_dataset=eval_data,
data_collator=DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False),
)
print("\n" + "=" * 70)
print("STARTING TRAINING")
print("=" * 70 + "\n")
trainer.train()
print("\nSaving model...")
trainer.save_model()
model.push_to_hub(OUTPUT_MODEL_NAME)
tokenizer.push_to_hub(OUTPUT_MODEL_NAME)
print("\n" + "=" * 70)
print("β TRAINING COMPLETE")
print(f"β Model: {OUTPUT_MODEL_NAME}")
print("=" * 70)
if __name__ == "__main__":
main()
|