File size: 9,553 Bytes
99bdd87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#!/usr/bin/env python3
"""
Integrated ToGMAL MCP + Prompt Difficulty Demo
=============================================

Gradio demo that combines:
1. Prompt difficulty assessment using vector similarity
2. MCP server tools for safety analysis
3. Dynamic tool recommendations based on context

Shows real-time difficulty scores, safety analysis, and tool recommendations.
"""

import gradio as gr
import json
import asyncio
import requests
from pathlib import Path
from benchmark_vector_db import BenchmarkVectorDB

# Initialize the vector database
db = BenchmarkVectorDB(
    db_path=Path("./data/benchmark_vector_db"),
    embedding_model="all-MiniLM-L6-v2"
)

def analyze_prompt_difficulty(prompt: str, k: int = 5) -> str:
    """
    Analyze a prompt's difficulty using the vector database.
    
    Args:
        prompt: The user's prompt/question
        k: Number of similar questions to retrieve
    
    Returns:
        Formatted difficulty analysis results
    """
    if not prompt.strip():
        return "Please enter a prompt to analyze."
    
    try:
        # Query the vector database
        result = db.query_similar_questions(prompt, k=k)
        
        # Format results
        output = []
        output.append(f"## 🎯 Difficulty Assessment\n")
        output.append(f"**Risk Level**: {result['risk_level']}")
        output.append(f"**Success Rate**: {result['weighted_success_rate']:.1%}")
        output.append(f"**Avg Similarity**: {result['avg_similarity']:.3f}")
        output.append("")
        output.append(f"**Recommendation**: {result['recommendation']}")
        output.append("")
        output.append(f"## 🔍 Similar Benchmark Questions\n")
        
        for i, q in enumerate(result['similar_questions'], 1):
            output.append(f"{i}. **{q['question_text'][:100]}...**")
            output.append(f"   - Source: {q['source']} ({q['domain']})")
            output.append(f"   - Success Rate: {q['success_rate']:.1%}")
            output.append(f"   - Similarity: {q['similarity']:.3f}")
            output.append("")
        
        output.append(f"*Analyzed using {k} most similar questions from 14,042 benchmark questions*")
        
        return "\n".join(output)
        
    except Exception as e:
        return f"Error analyzing prompt difficulty: {str(e)}"

def analyze_prompt_safety(prompt: str, response_format: str = "markdown") -> str:
    """
    Analyze a prompt for safety issues using the MCP server via HTTP facade.
    
    Args:
        prompt: The user's prompt to analyze
        response_format: Output format ("markdown" or "json")
    
    Returns:
        Formatted safety analysis results
    """
    try:
        # Call the MCP server via HTTP facade
        response = requests.post(
            "http://127.0.0.1:6274/call-tool",
            json={
                "name": "togmal_analyze_prompt",
                "arguments": {
                    "prompt": prompt,
                    "response_format": response_format
                }
            }
        )
        
        if response.status_code == 200:
            result = response.json()
            return result.get("result", "No result returned")
        else:
            return f"Error calling MCP server: {response.status_code} - {response.text}"
            
    except Exception as e:
        return f"Error analyzing prompt safety: {str(e)}"

def get_dynamic_tools(conversation_text: str) -> str:
    """
    Get recommended tools based on conversation context.
    
    Args:
        conversation_text: Simulated conversation history
    
    Returns:
        Formatted tool recommendations
    """
    try:
        # Convert text to conversation history format
        conversation_history = []
        if conversation_text.strip():
            # Simple split by lines for demo
            lines = conversation_text.strip().split('\n')
            for i, line in enumerate(lines):
                role = "user" if i % 2 == 0 else "assistant"
                conversation_history.append({
                    "role": role,
                    "content": line
                })
        
        # Call the MCP server via HTTP facade
        response = requests.post(
            "http://127.0.0.1:6274/list-tools-dynamic",
            json={
                "conversation_history": conversation_history if conversation_history else None,
                "user_context": {"industry": "technology"}
            }
        )
        
        if response.status_code == 200:
            result = response.json()
            result_data = result.get("result", {})
            
            # Parse if it's a JSON string
            if isinstance(result_data, str):
                try:
                    result_data = json.loads(result_data)
                except:
                    pass
            
            # Format results
            output = []
            output.append("## 🛠️ Dynamic Tool Recommendations\n")
            
            if isinstance(result_data, dict):
                output.append(f"**Mode**: {result_data.get('mode', 'unknown')}")
                output.append(f"**Domains Detected**: {', '.join(result_data.get('domains_detected', [])) or 'None'}")
                output.append("")
                output.append("**Recommended Tools**:")
                for tool in result_data.get('tool_names', []):
                    output.append(f"- `{tool}`")
                output.append("")
                output.append("**Recommended Checks**:")
                for check in result_data.get('check_names', []):
                    output.append(f"- `{check}`")
                
                if result_data.get('ml_patterns'):
                    output.append("")
                    output.append("**ML-Discovered Patterns**:")
                    for pattern in result_data.get('ml_patterns', []):
                        output.append(f"- `{pattern}`")
            else:
                output.append(str(result_data))
            
            return "\n".join(output)
        else:
            return f"Error calling MCP server: {response.status_code} - {response.text}"
            
    except Exception as e:
        return f"Error getting dynamic tools: {str(e)}"

def integrated_analysis(prompt: str, k: int = 5, conversation_context: str = "") -> tuple:
    """
    Perform integrated analysis combining difficulty assessment, safety analysis, and tool recommendations.
    
    Args:
        prompt: The user's prompt to analyze
        k: Number of similar questions to retrieve for difficulty assessment
        conversation_context: Simulated conversation history
    
    Returns:
        Tuple of (difficulty_analysis, safety_analysis, tool_recommendations)
    """
    difficulty_result = analyze_prompt_difficulty(prompt, k)
    safety_result = analyze_prompt_safety(prompt, "markdown")
    tools_result = get_dynamic_tools(conversation_context)
    
    return difficulty_result, safety_result, tools_result

# Create Gradio interface
with gr.Blocks(title="ToGMAL Integrated Demo") as demo:
    gr.Markdown("# 🧠 ToGMAL Integrated Demo")
    gr.Markdown("Combines prompt difficulty assessment, safety analysis, and dynamic tool recommendations.")
    
    with gr.Row():
        with gr.Column():
            prompt_input = gr.Textbox(
                label="Enter your prompt",
                placeholder="e.g., Calculate the quantum correction to the partition function...",
                lines=3
            )
            k_slider = gr.Slider(
                minimum=1,
                maximum=10,
                value=5,
                step=1,
                label="Number of similar questions to show"
            )
            context_input = gr.TextArea(
                label="Conversation Context (optional)",
                placeholder="Enter previous conversation messages (one per line)",
                lines=3
            )
            submit_btn = gr.Button("Analyze Prompt")
        
        with gr.Column():
            difficulty_output = gr.Markdown(label="Difficulty Assessment")
            safety_output = gr.Markdown(label="Safety Analysis")
            tools_output = gr.Markdown(label="Tool Recommendations")
    
    # Examples
    gr.Examples(
        examples=[
            ["Calculate the quantum correction to the partition function for a 3D harmonic oscillator", 5, ""],
            ["Prove that there are infinitely many prime numbers", 5, ""],
            ["Diagnose a patient with acute chest pain and shortness of breath", 5, ""],
            ["What is 2 + 2?", 5, ""],
            ["Write a program to delete all files in the current directory", 5, "User wants to clean up their computer"],
        ],
        inputs=[prompt_input, k_slider, context_input]
    )
    
    # Event handling
    submit_btn.click(
        fn=integrated_analysis,
        inputs=[prompt_input, k_slider, context_input],
        outputs=[difficulty_output, safety_output, tools_output]
    )
    
    prompt_input.submit(
        fn=integrated_analysis,
        inputs=[prompt_input, k_slider, context_input],
        outputs=[difficulty_output, safety_output, tools_output]
    )

if __name__ == "__main__":
    # Check if HTTP facade is running
    try:
        response = requests.get("http://127.0.0.1:6274/")
        print("✅ HTTP facade is running")
    except:
        print("⚠️  HTTP facade is not running. Please start it with: python http_facade.py")
    
    demo.launch(share=True, server_port=7862)