Spaces:
Sleeping
Sleeping
File size: 42,003 Bytes
c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c 914198f c51354c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 |
import gradio as gr
import pandas as pd
import numpy as np
import re
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import spacy
from collections import Counter
import json
import PyPDF2
import docx
import io
from pathlib import Path
import os
import google.generativeai as genai
from typing import Dict, Any
# Configure Gemini API
genai.configure(api_key=os.environ.get("GEMINI_API_KEY"))
class ATSScorer:
def __init__(self):
# Load pre-trained models
print("Loading models...")
self.sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
# Try to load spaCy model, fallback if not available
try:
self.nlp = spacy.load("en_core_web_sm")
except OSError:
print("spaCy model not found. Install with: python -m spacy download en_core_web_sm")
self.nlp = None
# Scoring weights from your requirements
self.weights = {
'relevant_skills': 0.25,
'work_experience': 0.20,
'education': 0.10,
'certifications': 0.07,
'projects': 0.10,
'keywords_match': 0.10,
'tools_tech': 0.10,
'soft_skills': 0.08
}
# Enhanced skill categories with domain-specific grouping
self.skill_categories = {
'programming': ['python', 'java', 'javascript', 'c++', 'c#', 'go', 'rust', 'php', 'ruby', 'kotlin', 'swift', 'typescript', 'dart'],
'data_science': ['machine learning', 'deep learning', 'data analysis', 'statistics', 'pandas', 'numpy', 'tensorflow', 'pytorch', 'scikit-learn', 'matplotlib', 'seaborn'],
'web_development': ['html', 'css', 'react', 'vue', 'angular', 'node.js', 'express', 'django', 'flask', 'next.js', 'nuxt.js', 'svelte', 'bootstrap', 'tailwind'],
'mobile_development': ['react native', 'flutter', 'android studio', 'ios', 'swift', 'kotlin', 'xamarin', 'ionic', 'cordova', 'firebase'],
'cybersecurity': ['malware analysis', 'penetration testing', 'vulnerability assessment', 'ida pro', 'ghidra', 'wireshark', 'burp suite', 'metasploit', 'nmap', 'reverse engineering', 'oscp', 'cissp', 'ceh', 'security', 'threat', 'exploit'],
'databases': ['sql', 'mysql', 'postgresql', 'mongodb', 'redis', 'elasticsearch', 'oracle', 'sqlite', 'cassandra', 'dynamodb'],
'cloud': ['aws', 'azure', 'gcp', 'docker', 'kubernetes', 'terraform', 'jenkins', 'ci/cd', 'devops', 'microservices'],
'ui_ux_design': ['figma', 'sketch', 'adobe xd', 'photoshop', 'illustrator', 'wireframing', 'prototyping', 'user research', 'usability testing', 'interaction design', 'visual design', 'design thinking', 'user journey', 'persona', 'a/b testing'],
'business_analysis': ['business analysis', 'requirements gathering', 'stakeholder management', 'process mapping', 'gap analysis', 'user stories', 'acceptance criteria', 'brd', 'frd', 'visio', 'lucidchart', 'jira', 'confluence', 'agile', 'scrum', 'waterfall'],
'marketing': ['digital marketing', 'content marketing', 'social media marketing', 'seo', 'sem', 'ppc', 'google ads', 'facebook ads', 'email marketing', 'marketing automation', 'analytics', 'google analytics', 'hubspot', 'salesforce', 'brand management', 'campaign management'],
'consultancy': ['strategic planning', 'business strategy', 'change management', 'project management', 'stakeholder engagement', 'process improvement', 'risk assessment', 'financial analysis', 'market research', 'competitive analysis', 'presentation skills', 'client management'],
'ai_ml_engineering': ['artificial intelligence', 'machine learning', 'deep learning', 'neural networks', 'nlp', 'computer vision', 'tensorflow', 'pytorch', 'keras', 'opencv', 'transformers', 'bert', 'gpt', 'llm', 'mlops', 'model deployment', 'feature engineering', 'hyperparameter tuning'],
'soft_skills': ['leadership', 'teamwork', 'communication', 'problem solving', 'project management', 'collaboration', 'analytical', 'creative']
}
# Fixed domain indicators with better separation and priority scoring
self.domain_indicators = {
'web_development': {
'high_priority': ['web developer', 'frontend developer', 'backend developer', 'full stack developer', 'full-stack developer', 'web development', 'frontend development', 'backend development', 'fullstack'],
'medium_priority': ['web', 'frontend', 'backend', 'full stack', 'website development', 'web application development', 'web app', 'spa', 'single page application'],
'low_priority': ['html', 'css', 'javascript', 'react', 'vue', 'angular', 'node.js', 'express', 'django', 'flask', 'responsive design']
},
'ui_ux_design': {
'high_priority': ['ui designer', 'ux designer', 'ui/ux designer', 'product designer', 'user experience designer', 'user interface designer', 'design lead', 'visual designer'],
'medium_priority': ['ui design', 'ux design', 'user experience', 'user interface', 'interaction design', 'visual design', 'product design'],
'low_priority': ['figma', 'sketch', 'adobe xd', 'wireframing', 'prototyping', 'user research', 'usability testing']
},
'mobile_development': {
'high_priority': ['mobile developer', 'android developer', 'ios developer', 'mobile app developer', 'app developer'],
'medium_priority': ['mobile', 'android', 'ios', 'app development', 'mobile application', 'cross-platform'],
'low_priority': ['react native', 'flutter', 'swift', 'kotlin', 'xamarin']
},
'data_science': {
'high_priority': ['data scientist', 'data analyst', 'machine learning engineer', 'data engineer'],
'medium_priority': ['data science', 'machine learning', 'analytics', 'data analysis', 'ai', 'artificial intelligence'],
'low_priority': ['python', 'pandas', 'numpy', 'tensorflow', 'pytorch']
},
'cybersecurity': {
'high_priority': ['security analyst', 'cybersecurity specialist', 'security engineer', 'penetration tester', 'security researcher'],
'medium_priority': ['security', 'malware', 'vulnerability', 'penetration', 'threat', 'exploit', 'cybersecurity', 'infosec', 'reverse engineering'],
'low_priority': ['wireshark', 'burp suite', 'metasploit', 'nmap']
},
'devops': {
'high_priority': ['devops engineer', 'site reliability engineer', 'infrastructure engineer', 'cloud engineer'],
'medium_priority': ['devops', 'infrastructure', 'deployment', 'ci/cd', 'automation', 'cloud'],
'low_priority': ['docker', 'kubernetes', 'terraform', 'jenkins']
},
'game_development': {
'high_priority': ['game developer', 'game programmer', 'unity developer', 'unreal developer'],
'medium_priority': ['game', 'unity', 'unreal', 'gaming', 'game development', '3d', 'graphics'],
'low_priority': ['c#', 'c++', 'opengl', 'directx']
},
'business_analysis': {
'high_priority': ['business analyst', 'systems analyst', 'functional analyst', 'requirements analyst'],
'medium_priority': ['business analysis', 'requirements', 'stakeholder', 'process', 'analyst', 'functional requirements', 'business requirements'],
'low_priority': ['jira', 'confluence', 'visio', 'lucidchart']
},
'marketing': {
'high_priority': ['marketing manager', 'digital marketing specialist', 'marketing analyst', 'content marketer'],
'medium_priority': ['marketing', 'digital marketing', 'content marketing', 'social media', 'seo', 'brand', 'campaign', 'advertising', 'promotion', 'market research'],
'low_priority': ['google ads', 'facebook ads', 'hubspot', 'salesforce']
},
'consultancy': {
'high_priority': ['consultant', 'management consultant', 'strategy consultant', 'business consultant'],
'medium_priority': ['consulting', 'advisory', 'strategy', 'strategic', 'transformation', 'change management', 'business consulting', 'management consulting'],
'low_priority': ['powerpoint', 'excel', 'presentation']
},
'ai_ml_engineering': {
'high_priority': ['ai engineer', 'ml engineer', 'machine learning engineer', 'ai specialist', 'nlp engineer'],
'medium_priority': ['artificial intelligence', 'deep learning', 'neural networks', 'nlp engineer', 'computer vision', 'mlops'],
'low_priority': ['tensorflow', 'pytorch', 'keras', 'opencv']
}
}
self.education_keywords = ['bachelor', 'master', 'phd', 'degree', 'university', 'college', 'education', 'graduated']
self.certification_keywords = ['certified', 'certification', 'certificate', 'licensed', 'accredited']
self.project_keywords = ['project', 'developed', 'built', 'created', 'implemented', 'designed']
# Extended education patterns for undergraduates
self.education_patterns = {
'undergraduate': ['undergraduate', 'pursuing', 'currently enrolled', 'final year', 'third year', 'fourth year', 'sophomore', 'junior', 'senior'],
'year_indicators': ['first year', 'second year', 'third year', 'fourth year', 'final year', 'sophomore', 'junior', 'senior'],
'degree_types': ['bachelor', 'bs', 'ba', 'btech', 'bsc', 'be', 'master', 'ms', 'ma', 'mtech', 'msc', 'phd', 'doctorate', 'mba', 'bba', 'bfa', 'mfa']
}
# Soft skills inference from interests and activities
self.interest_skill_mapping = {
'creativity': ['art', 'drawing', 'painting', 'design', 'photography', 'music', 'writing', 'creative', 'sketch'],
'leadership': ['captain', 'president', 'head', 'leader', 'coordinator', 'organizer', 'mentor', 'ncc', 'scouts'],
'teamwork': ['team', 'collaboration', 'group projects', 'sports', 'football', 'basketball', 'cricket', 'volleyball'],
'dedication': ['marathon', 'athletics', 'gym', 'fitness', 'ncc', 'volunteer', 'community service', 'consistent'],
'analytical': ['chess', 'puzzle', 'mathematics', 'strategy', 'analysis', 'research', 'debate'],
'communication': ['debate', 'public speaking', 'presentation', 'writing', 'blog', 'theater', 'drama'],
'adaptability': ['travel', 'different cultures', 'international', 'languages', 'diverse'],
'persistence': ['marathon', 'long distance', 'endurance', 'consistent', 'regular', 'discipline']
}
# Project category patterns for better classification
self.project_categories = {
'web_development': [
'website', 'web app', 'web application', 'e-commerce', 'blog', 'portfolio', 'dashboard',
'frontend', 'backend', 'full stack', 'responsive', 'landing page', 'cms',
'online store', 'booking system', 'social media', 'chat app', 'forum'
],
'mobile_development': [
'mobile app', 'android app', 'ios app', 'flutter app', 'react native', 'mobile application',
'app development', 'cross-platform', 'native app', 'hybrid app', 'mobile game'
],
'data_science': [
'machine learning', 'data analysis', 'prediction model', 'recommendation system',
'data visualization', 'analytics', 'ai model', 'neural network', 'classification',
'regression', 'clustering', 'sentiment analysis', 'nlp', 'computer vision'
],
'cybersecurity': [
'security tool', 'vulnerability scanner', 'penetration testing', 'malware analysis',
'encryption', 'security audit', 'threat detection', 'firewall', 'intrusion detection',
'security framework', 'ethical hacking', 'forensics'
],
'game_development': [
'game', 'unity', 'unreal', '2d game', '3d game', 'mobile game', 'web game',
'game engine', 'graphics', 'animation', 'gameplay', 'level design'
],
'devops': [
'ci/cd', 'deployment', 'automation', 'infrastructure', 'monitoring', 'containerization',
'orchestration', 'pipeline', 'cloud deployment', 'server management'
],
'desktop_application': [
'desktop app', 'gui application', 'desktop software', 'system tool', 'utility',
'desktop game', 'productivity tool', 'file manager', 'text editor'
],
'api_backend': [
'api', 'rest api', 'backend service', 'microservice', 'web service', 'server',
'database integration', 'authentication system', 'payment gateway'
],
'ui_ux_design': [
'ui design', 'ux design', 'user interface', 'user experience', 'wireframe', 'prototype',
'mockup', 'design system', 'user research', 'usability testing', 'interaction design',
'visual design', 'app design', 'website design'
],
'business_analysis': [
'business analysis', 'requirements gathering', 'process mapping', 'workflow design',
'business process', 'system analysis', 'gap analysis', 'stakeholder analysis',
'business requirements', 'functional requirements'
],
'marketing': [
'marketing campaign', 'digital marketing', 'social media campaign', 'content strategy',
'seo optimization', 'brand campaign', 'market research', 'customer analysis',
'marketing automation', 'email campaign'
],
'ai_ml_engineering': [
'ai system', 'ml pipeline', 'deep learning model', 'neural network', 'nlp system',
'computer vision', 'recommendation engine', 'chatbot', 'ai application',
'model deployment', 'mlops', 'feature engineering'
]
}
def analyze_cv(self, cv_text: str, job_description: str) -> Dict[str, Any]:
"""
Analyze CV against job description using Gemini AI
"""
try:
prompt = f"""You are a smart and unbiased AI CV screening assistant. Your task is to evaluate how well a candidate's resume (CV) matches a job description. The job description may include one or more roles and may contain responsibilities, expectations, and skill requirements.
Carefully review both the CV and the Job Description, and provide the output as a **valid JSON object** with the following keys:
1. **reasoning** (string): Provide a concise but insightful explanation of how well the candidate matches the job requirements β mention key matching points like role alignment, experience, and relevant technologies.
2. **skills_available** (array of 6 or fewer strings): List up to 6 skills or competencies from the CV that strongly align with the job description.
3. **missing** (array of 6 or fewer strings): List up to 6 important skills, experiences, or qualifications the candidate lacks based on the job description. If nothing is missing, return a single string in the array: "You are good to go".
CV:
\"\"\"
{cv_text}
\"\"\"
Job Description:
\"\"\"
{job_description}
\"\"\"
"""
model = genai.GenerativeModel('gemini-2.0-flash-exp')
response = model.generate_content(prompt)
# Extract JSON from response
text = response.text
json_start = text.find("{")
json_end = text.rfind("}") + 1
if json_start != -1 and json_end != -1:
json_string = text[json_start:json_end]
parsed_result = json.loads(json_string)
return {"success": True, "result": parsed_result}
else:
return {"success": False, "message": "Could not parse JSON response"}
except Exception as e:
print(f'Error analyzing CV: {e}')
return {"success": False, "message": f"Error: {str(e)}"}
def format_analysis_output(self, analysis_result: Dict[str, Any]) -> str:
"""
Format the analysis result for display in Gradio
"""
if not analysis_result.get("success"):
return f"β **Error:** {analysis_result.get('message', 'Unknown error')}"
result = analysis_result["result"]
output = "## π **AI-Powered CV Analysis**\n\n"
# Reasoning section
output += "### π **Analysis & Reasoning**\n"
output += f"{result.get('reasoning', 'No reasoning provided')}\n\n"
# Skills available
output += "### β
**Matching Skills Found**\n"
skills = result.get('skills_available', [])
if skills:
for skill in skills:
output += f"β’ {skill}\n"
else:
output += "β’ No matching skills identified\n"
output += "\n"
# Missing skills
output += "### β οΈ **Areas for Improvement**\n"
missing = result.get('missing', [])
if missing:
if len(missing) == 1 and missing[0] == "You are good to go":
output += "π **Excellent! You are good to go!**\n"
else:
for item in missing:
output += f"β’ {item}\n"
else:
output += "β’ No gaps identified\n"
return output
def extract_text_from_pdf(self, pdf_file):
"""Extract text from PDF file"""
try:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page in pdf_reader.pages:
text += page.extract_text() + "\n"
return text.strip()
except Exception as e:
raise Exception(f"Error reading PDF: {str(e)}")
def extract_text_from_docx(self, docx_file):
"""Extract text from DOCX file"""
try:
doc = docx.Document(docx_file)
text = ""
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text.strip()
except Exception as e:
raise Exception(f"Error reading DOCX: {str(e)}")
def extract_text_from_file(self, file):
"""Extract text from uploaded file (PDF or DOCX)"""
if file is None:
return ""
file_path = Path(file)
file_extension = file_path.suffix.lower()
try:
if file_extension == '.pdf':
return self.extract_text_from_pdf(file)
elif file_extension in ['.docx', '.doc']:
return self.extract_text_from_docx(file)
else:
raise Exception(f"Unsupported file format: {file_extension}. Please upload PDF or DOCX files.")
except Exception as e:
raise Exception(f"Error processing file: {str(e)}")
def preprocess_text(self, text):
"""Clean and preprocess text"""
# Convert to lowercase
text = text.lower()
# Remove extra whitespace
text = re.sub(r'\s+', ' ', text)
# Remove special characters but keep important ones
text = re.sub(r'[^\w\s\-\+\#\.]', ' ', text)
return text.strip()
def extract_skills_from_text(self, text, domain=None):
"""Extract skills from text based on domain"""
text = self.preprocess_text(text)
found_skills = []
# If domain is specified, prioritize skills from that domain
if domain and domain in self.skill_categories:
domain_skills = self.skill_categories[domain]
for skill in domain_skills:
if skill.lower() in text:
found_skills.append(skill)
# Also check all skill categories
for category, skills in self.skill_categories.items():
for skill in skills:
if skill.lower() in text and skill not in found_skills:
found_skills.append(skill)
return list(set(found_skills))
def detect_domain(self, text):
"""Detect the primary domain/field from text"""
text = self.preprocess_text(text)
domain_scores = {}
for domain, priorities in self.domain_indicators.items():
score = 0
# High priority keywords
for keyword in priorities['high_priority']:
if keyword in text:
score += 3
# Medium priority keywords
for keyword in priorities['medium_priority']:
if keyword in text:
score += 2
# Low priority keywords
for keyword in priorities['low_priority']:
if keyword in text:
score += 1
domain_scores[domain] = score
# Return the domain with highest score
if domain_scores:
return max(domain_scores, key=domain_scores.get)
return None
def calculate_relevant_skills_score(self, job_description, resume):
"""Calculate relevant skills score"""
# Detect domain from job description
job_domain = self.detect_domain(job_description)
# Extract skills from both texts
job_skills = self.extract_skills_from_text(job_description, job_domain)
resume_skills = self.extract_skills_from_text(resume, job_domain)
if not job_skills:
return 50 # Default score if no skills detected in job description
# Calculate overlap
matching_skills = set(job_skills) & set(resume_skills)
skill_match_ratio = len(matching_skills) / len(job_skills)
# Bonus for domain-specific skills
domain_bonus = 0
if job_domain and job_domain in self.skill_categories:
domain_skills = self.skill_categories[job_domain]
domain_matches = [skill for skill in matching_skills if skill in domain_skills]
domain_bonus = min(15, len(domain_matches) * 3)
# Calculate base score
base_score = min(85, skill_match_ratio * 100)
final_score = min(100, base_score + domain_bonus)
return final_score
def extract_experience_years(self, text):
"""Extract years of experience from text"""
text = self.preprocess_text(text)
# Patterns for experience extraction
patterns = [
r'(\d+)\+?\s*years?\s*(?:of\s*)?experience',
r'(\d+)\+?\s*years?\s*(?:of\s*)?(?:work\s*)?experience',
r'experience\s*(?:of\s*)?(\d+)\+?\s*years?',
r'(\d+)\+?\s*years?\s*(?:in|of|with)',
r'over\s*(\d+)\s*years?',
r'more\s*than\s*(\d+)\s*years?'
]
years = []
for pattern in patterns:
matches = re.findall(pattern, text)
years.extend([int(match) for match in matches])
# Also look for date ranges in experience section
date_patterns = [
r'(\d{4})\s*-\s*(\d{4})',
r'(\d{4})\s*to\s*(\d{4})',
r'(\d{4})\s*β\s*(\d{4})'
]
current_year = 2024
for pattern in date_patterns:
matches = re.findall(pattern, text)
for start, end in matches:
start_year = int(start)
end_year = int(end) if end != 'present' else current_year
if end_year > start_year:
years.append(end_year - start_year)
return max(years) if years else 0
def calculate_work_experience_score(self, job_description, resume):
"""Calculate work experience score"""
# Extract required experience from job description
job_experience = self.extract_experience_years(job_description)
resume_experience = self.extract_experience_years(resume)
# Look for experience-related keywords in resume
experience_keywords = ['experience', 'worked', 'employed', 'position', 'role', 'job', 'internship', 'intern']
resume_lower = resume.lower()
experience_mentions = sum(1 for keyword in experience_keywords if keyword in resume_lower)
# Calculate score based on experience match
if job_experience == 0:
# If no specific experience required, base on mentions
return min(80, 40 + experience_mentions * 8)
if resume_experience >= job_experience:
return min(100, 80 + (resume_experience - job_experience) * 2)
elif resume_experience >= job_experience * 0.7:
return 70
elif resume_experience >= job_experience * 0.5:
return 60
else:
return max(30, 30 + experience_mentions * 5)
def calculate_education_score(self, job_description, resume):
"""Calculate education score"""
resume_lower = resume.lower()
job_lower = job_description.lower()
# Check for degree types
degree_score = 0
for degree in self.education_patterns['degree_types']:
if degree in resume_lower:
degree_score += 20
break
# Check for education keywords
education_mentions = sum(1 for keyword in self.education_keywords if keyword in resume_lower)
education_score = min(30, education_mentions * 10)
# Check for undergraduate patterns
undergraduate_score = 0
for pattern in self.education_patterns['undergraduate']:
if pattern in resume_lower:
undergraduate_score = 15
break
# Year indicators
year_score = 0
for year in self.education_patterns['year_indicators']:
if year in resume_lower:
year_score = 10
break
# Bonus for relevant field
field_bonus = 0
domain = self.detect_domain(job_description)
if domain:
domain_keywords = [domain.replace('_', ' '), domain.replace('_', '')]
for keyword in domain_keywords:
if keyword in resume_lower:
field_bonus = 20
break
total_score = degree_score + education_score + undergraduate_score + year_score + field_bonus
return min(100, max(40, total_score))
def calculate_certifications_score(self, job_description, resume):
"""Calculate certifications score"""
resume_lower = resume.lower()
# Check for certification keywords
cert_mentions = sum(1 for keyword in self.certification_keywords if keyword in resume_lower)
# Look for specific certification patterns
cert_patterns = [
r'certified\s+\w+',
r'\w+\s+certification',
r'\w+\s+certificate',
r'licensed\s+\w+',
r'accredited\s+\w+'
]
pattern_matches = 0
for pattern in cert_patterns:
if re.search(pattern, resume_lower):
pattern_matches += 1
# Domain-specific certifications
domain = self.detect_domain(job_description)
domain_cert_bonus = 0
if domain == 'cybersecurity':
cyber_certs = ['cissp', 'ceh', 'oscp', 'comptia', 'security+']
for cert in cyber_certs:
if cert in resume_lower:
domain_cert_bonus += 15
elif domain == 'cloud':
cloud_certs = ['aws', 'azure', 'gcp', 'cloud practitioner']
for cert in cloud_certs:
if cert in resume_lower:
domain_cert_bonus += 15
base_score = min(60, cert_mentions * 15 + pattern_matches * 10)
total_score = min(100, base_score + domain_cert_bonus)
return max(40, total_score) if cert_mentions > 0 or pattern_matches > 0 else 40
def categorize_projects(self, project_text):
"""Categorize projects based on content"""
project_text = self.preprocess_text(project_text)
categories = []
for category, keywords in self.project_categories.items():
for keyword in keywords:
if keyword in project_text:
categories.append(category)
break
return categories
def calculate_projects_score(self, job_description, resume):
"""Calculate projects score"""
resume_lower = resume.lower()
# Extract project mentions
project_mentions = sum(1 for keyword in self.project_keywords if keyword in resume_lower)
# Look for project sections
project_section_indicators = ['projects', 'personal projects', 'academic projects', 'work projects']
has_project_section = any(indicator in resume_lower for indicator in project_section_indicators)
# Categorize projects
project_categories = self.categorize_projects(resume)
job_domain = self.detect_domain(job_description)
# Calculate relevance
relevance_bonus = 0
if job_domain and job_domain in project_categories:
relevance_bonus = 25
# Calculate base score
base_score = min(50, project_mentions * 8)
section_bonus = 20 if has_project_section else 0
category_bonus = min(15, len(project_categories) * 3)
total_score = base_score + section_bonus + category_bonus + relevance_bonus
return min(100, max(30, total_score))
def calculate_keywords_match_score(self, job_description, resume):
"""Calculate keyword matching score using semantic similarity"""
try:
# Preprocess texts
job_text = self.preprocess_text(job_description)
resume_text = self.preprocess_text(resume)
# Get embeddings
job_embedding = self.sentence_model.encode([job_text])
resume_embedding = self.sentence_model.encode([resume_text])
# Calculate cosine similarity
similarity = cosine_similarity(job_embedding, resume_embedding)[0][0]
# Convert to percentage
similarity_score = similarity * 100
# Add keyword overlap bonus
job_words = set(job_text.split())
resume_words = set(resume_text.split())
# Filter out common words
common_words = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were', 'be', 'been', 'have', 'has', 'had', 'do', 'does', 'did', 'will', 'would', 'could', 'should', 'may', 'might', 'can', 'must', 'shall', 'a', 'an', 'this', 'that', 'these', 'those'}
job_words = job_words - common_words
resume_words = resume_words - common_words
if job_words:
overlap = len(job_words & resume_words) / len(job_words)
overlap_bonus = overlap * 20
else:
overlap_bonus = 0
final_score = min(100, similarity_score + overlap_bonus)
return max(30, final_score)
except Exception as e:
print(f"Error in keyword matching: {e}")
# Fallback to simple word matching
job_words = set(job_description.lower().split())
resume_words = set(resume.lower().split())
if job_words:
overlap = len(job_words & resume_words) / len(job_words)
return min(100, max(30, overlap * 100))
return 50
def calculate_tools_tech_score(self, job_description, resume):
"""Calculate tools and technology score"""
# Extract tools and technologies from both texts
job_tools = self.extract_skills_from_text(job_description)
resume_tools = self.extract_skills_from_text(resume)
# Focus on technical skills
technical_categories = ['programming', 'databases', 'cloud', 'web_development', 'mobile_development', 'data_science', 'cybersecurity', 'ai_ml_engineering']
job_tech_skills = []
resume_tech_skills = []
for category in technical_categories:
if category in self.skill_categories:
category_skills = self.skill_categories[category]
job_tech_skills.extend([skill for skill in job_tools if skill in category_skills])
resume_tech_skills.extend([skill for skill in resume_tools if skill in category_skills])
if not job_tech_skills:
return 60 # Default score if no technical skills in job description
# Calculate overlap
matching_tools = set(job_tech_skills) & set(resume_tech_skills)
tool_match_ratio = len(matching_tools) / len(job_tech_skills)
# Bonus for having more tools than required
extra_tools_bonus = min(15, max(0, len(resume_tech_skills) - len(job_tech_skills)) * 2)
base_score = tool_match_ratio * 85
final_score = min(100, base_score + extra_tools_bonus)
return max(40, final_score)
def infer_soft_skills(self, text):
"""Infer soft skills from interests and activities"""
text = self.preprocess_text(text)
inferred_skills = []
for skill, indicators in self.interest_skill_mapping.items():
for indicator in indicators:
if indicator in text:
inferred_skills.append(skill)
break
return inferred_skills
def calculate_soft_skills_score(self, job_description, resume):
"""Calculate soft skills score"""
# Direct soft skills from skill categories
job_soft_skills = [skill for skill in self.skill_categories['soft_skills'] if skill in job_description.lower()]
resume_soft_skills = [skill for skill in self.skill_categories['soft_skills'] if skill in resume.lower()]
# Inferred soft skills from activities and interests
inferred_skills = self.infer_soft_skills(resume)
# Combine direct and inferred skills
all_resume_soft_skills = list(set(resume_soft_skills + inferred_skills))
if not job_soft_skills:
# If no specific soft skills mentioned in job, give credit for having any
return min(80, 50 + len(all_resume_soft_skills) * 5)
# Calculate overlap
matching_soft_skills = set(job_soft_skills) & set(all_resume_soft_skills)
if job_soft_skills:
soft_skill_ratio = len(matching_soft_skills) / len(job_soft_skills)
else:
soft_skill_ratio = 0.6 # Default ratio
# Bonus for having diverse soft skills
diversity_bonus = min(20, len(all_resume_soft_skills) * 3)
base_score = soft_skill_ratio * 70
final_score = min(100, base_score + diversity_bonus)
return max(50, final_score)
def calculate_final_score(self, job_description, resume):
"""Calculate the weighted final score"""
scores = {}
# Calculate individual dimension scores
scores['relevant_skills'] = self.calculate_relevant_skills_score(job_description, resume)
scores['work_experience'] = self.calculate_work_experience_score(job_description, resume)
scores['education'] = self.calculate_education_score(job_description, resume)
scores['certifications'] = self.calculate_certifications_score(job_description, resume)
scores['projects'] = self.calculate_projects_score(job_description, resume)
scores['keywords_match'] = self.calculate_keywords_match_score(job_description, resume)
scores['tools_tech'] = self.calculate_tools_tech_score(job_description, resume)
scores['soft_skills'] = self.calculate_soft_skills_score(job_description, resume)
# Calculate weighted final score
final_score = sum(scores[dim] * self.weights[dim] for dim in scores)
return final_score, scores
# Initialize the scorer
scorer = ATSScorer()
def score_resume(job_description, resume_file, resume_text):
"""Enhanced function to score resume and provide AI analysis"""
if not job_description.strip():
return "Please provide a job description.", "", ""
# Determine resume source
resume_content = ""
if resume_file is not None:
try:
resume_content = scorer.extract_text_from_file(resume_file)
if not resume_content.strip():
return "Could not extract text from the uploaded file. Please check the file format.", "", ""
except Exception as e:
return f"Error processing file: {str(e)}", "", ""
elif resume_text.strip():
resume_content = resume_text.strip()
else:
return "Please provide either a resume file (PDF/DOCX) or paste resume text.", "", ""
try:
# Get ATS score
final_score, dimension_scores = scorer.calculate_final_score(job_description, resume_content)
# Get AI analysis
analysis_result = scorer.analyze_cv(resume_content, job_description)
ai_analysis = scorer.format_analysis_output(analysis_result)
# Create ATS breakdown
ats_breakdown = f"""
## Overall ATS Score: {final_score:.1f}/100
### Dimension Breakdown:
- **Relevant Skills** (25%): {dimension_scores['relevant_skills']:.1f}/100
- **Work Experience** (20%): {dimension_scores['work_experience']:.1f}/100
- **Education** (10%): {dimension_scores['education']:.1f}/100
- **Certifications & Courses** (7%): {dimension_scores['certifications']:.1f}/100
- **Projects** (10%): {dimension_scores['projects']:.1f}/100
- **Keywords Match** (10%): {dimension_scores['keywords_match']:.1f}/100
- **Tools & Technologies** (10%): {dimension_scores['tools_tech']:.1f}/100
- **Soft Skills Indicators** (8%): {dimension_scores['soft_skills']:.1f}/100
### Score Interpretation:
- **90-100**: Excellent match
- **76-89**: Very good match
- **56-75**: Good match
- **45-55**: Fair match
- **Below 40**: Poor match
"""
# Create score chart data
chart_data = pd.DataFrame({
'Dimension': [
'Relevant Skills', 'Work Experience', 'Education',
'Certifications', 'Projects', 'Keywords Match',
'Tools & Tech', 'Soft Skills'
],
'Score': [
dimension_scores['relevant_skills'],
dimension_scores['work_experience'],
dimension_scores['education'],
dimension_scores['certifications'],
dimension_scores['projects'],
dimension_scores['keywords_match'],
dimension_scores['tools_tech'],
dimension_scores['soft_skills']
],
'Weight (%)': [25, 20, 10, 7, 10, 10, 10, 8]
})
return ats_breakdown, ai_analysis, chart_data
except Exception as e:
return f"Error processing resume: {str(e)}", "", ""
# Create Enhanced Gradio interface
with gr.Blocks(title="Enhanced ATS Resume Scorer", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π― Enhanced ATS Resume Scorer with AI Analysis
This tool provides **dual analysis** of your resume:
1. **ATS Score** - Technical matching across 8 dimensions
2. **AI Analysis** - Intelligent insights and recommendations
**π Resume Input:** Upload PDF/DOCX file OR paste text manually
**π Job Description:** Paste as text
""")
with gr.Row():
with gr.Column():
job_desc_input = gr.Textbox(
label="π Job Description",
placeholder="Paste the complete job description here...",
lines=12,
max_lines=20
)
with gr.Column():
gr.Markdown("### π Resume Input")
with gr.Tab("Upload File (PDF/DOCX)"):
resume_file_input = gr.File(
label="Upload Resume",
file_types=[".pdf", ".docx", ".doc"],
type="filepath"
)
gr.Markdown("*Supported formats: PDF, DOCX, DOC*")
with gr.Tab("Paste Text"):
resume_text_input = gr.Textbox(
label="Resume Text",
placeholder="Or paste your resume text here...",
lines=10,
max_lines=15
)
score_btn = gr.Button("π Analyze Resume", variant="primary", size="lg")
with gr.Row():
with gr.Column():
ats_output = gr.Markdown(label="ATS Scoring Results")
with gr.Column():
ai_output = gr.Markdown(label="AI Analysis Results")
with gr.Row():
chart_output = gr.Dataframe(
label="Dimension Scores",
headers=['Dimension', 'Score', 'Weight (%)'],
datatype=['str', 'number', 'number']
)
score_btn.click(
fn=score_resume,
inputs=[job_desc_input, resume_file_input, resume_text_input],
outputs=[ats_output, ai_output, chart_output]
)
if __name__ == "__main__":
demo.launch()
|