Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .github/workflows/update_space.yml +13 -13
- app.py +34 -17
.github/workflows/update_space.yml
CHANGED
|
@@ -3,26 +3,26 @@ name: Run Python script
|
|
| 3 |
on:
|
| 4 |
push:
|
| 5 |
branches:
|
| 6 |
-
-
|
| 7 |
|
| 8 |
jobs:
|
| 9 |
build:
|
| 10 |
runs-on: ubuntu-latest
|
| 11 |
|
| 12 |
steps:
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
|
|
|
| 3 |
on:
|
| 4 |
push:
|
| 5 |
branches:
|
| 6 |
+
- main
|
| 7 |
|
| 8 |
jobs:
|
| 9 |
build:
|
| 10 |
runs-on: ubuntu-latest
|
| 11 |
|
| 12 |
steps:
|
| 13 |
+
- name: Checkout
|
| 14 |
+
uses: actions/checkout@v2
|
| 15 |
|
| 16 |
+
- name: Set up Python
|
| 17 |
+
uses: actions/setup-python@v2
|
| 18 |
+
with:
|
| 19 |
+
python-version: "3.9"
|
| 20 |
|
| 21 |
+
- name: Install Gradio
|
| 22 |
+
run: python -m pip install gradio
|
| 23 |
|
| 24 |
+
- name: Log in to Hugging Face
|
| 25 |
+
run: python -c 'import huggingface_hub; huggingface_hub.login(token="${{ secrets.hf_token }}")'
|
| 26 |
|
| 27 |
+
- name: Deploy to Spaces
|
| 28 |
+
run: gradio deploy
|
app.py
CHANGED
|
@@ -43,12 +43,22 @@ class Inference:
|
|
| 43 |
self.sae = sae
|
| 44 |
self.cfg_dict = cfg_dict
|
| 45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def _get_sae_out_and_feature_activations(self):
|
| 47 |
-
# given the words in
|
| 48 |
sv_logits, activationCache = self.model.run_with_cache(self.steering_vector_prompt, prepend_bos=True)
|
| 49 |
sv_feature_acts = self.sae.encode(activationCache[self.sae.cfg.hook_name])
|
| 50 |
-
# get top_k of 1
|
| 51 |
-
# self.sae_out = sae.decode(sv_feature_acts)
|
| 52 |
return self.sae.decode(sv_feature_acts), sv_feature_acts
|
| 53 |
|
| 54 |
def _hooked_generate(self, prompt_batch, fwd_hooks, seed=None, **kwargs):
|
|
@@ -69,9 +79,7 @@ class Inference:
|
|
| 69 |
# return torch.topk(sv_feature_acts, 1).indices.tolist()
|
| 70 |
features = torch.topk(sv_feature_activations, 1).indices
|
| 71 |
print(f'features that align with the text prompt: {features}')
|
| 72 |
-
|
| 73 |
-
return features
|
| 74 |
-
|
| 75 |
|
| 76 |
def _get_steering_hook(self, feature, sae_out):
|
| 77 |
coeff = self.coeff
|
|
@@ -93,7 +101,7 @@ class Inference:
|
|
| 93 |
# and not use the seperate function _get_steering_hook()
|
| 94 |
sae_out, sv_feature_acts = self._get_sae_out_and_feature_activations()
|
| 95 |
features = self._get_features(sv_feature_acts)
|
| 96 |
-
steering_hooks = [self._get_steering_hook(feature, sae_out) for feature in features
|
| 97 |
|
| 98 |
return steering_hooks
|
| 99 |
|
|
@@ -101,12 +109,10 @@ class Inference:
|
|
| 101 |
def _run_generate(self, example_prompt, steering_on: bool):
|
| 102 |
|
| 103 |
self.model.reset_hooks()
|
| 104 |
-
steer_hooks = self._get_steering_hooks()
|
| 105 |
-
editing_hooks = [ (self.sae_id, steer_hook) for steer_hook in steer_hooks]
|
| 106 |
-
# editing_hooks = [(self.sae_id, steer_hook)]
|
| 107 |
-
# ^^change this to support steer_hooks being a list of steer_hooks
|
| 108 |
-
print(f"steering by {len(editing_hooks)} hooks")
|
| 109 |
if steering_on:
|
|
|
|
|
|
|
|
|
|
| 110 |
res = self._hooked_generate([example_prompt] * 3, editing_hooks, seed=None, **self.sampling_kwargs)
|
| 111 |
else:
|
| 112 |
tokenized = self.model.to_tokens([example_prompt])
|
|
@@ -129,12 +135,12 @@ class Inference:
|
|
| 129 |
|
| 130 |
|
| 131 |
|
| 132 |
-
MODEL = "gemma-2b"
|
| 133 |
-
PRETRAINED_SAE = "gemma-2b-res-jb"
|
| 134 |
MODEL = "gpt2-small"
|
| 135 |
PRETRAINED_SAE = "gpt2-small-res-jb"
|
| 136 |
LAYER = 10
|
| 137 |
-
chatbot_model = Inference(MODEL,PRETRAINED_SAE, LAYER)
|
| 138 |
|
| 139 |
|
| 140 |
import time
|
|
@@ -153,6 +159,15 @@ def slow_echo_steering(message, history):
|
|
| 153 |
time.sleep(0.01)
|
| 154 |
yield result[: i + 1]
|
| 155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
with gr.Blocks() as demo:
|
| 157 |
with gr.Row():
|
| 158 |
gr.Markdown("*STANDARD HEXTER BOT*")
|
|
@@ -182,15 +197,17 @@ with gr.Blocks() as demo:
|
|
| 182 |
)
|
| 183 |
with gr.Row():
|
| 184 |
steering_prompt = gr.Textbox(label="Steering prompt", value="Golden Gate Bridge")
|
|
|
|
|
|
|
|
|
|
| 185 |
with gr.Row():
|
| 186 |
coeff = gr.Slider(1, 1000, 300, label="Coefficient", info="Coefficient is..", interactive=True)
|
| 187 |
with gr.Row():
|
| 188 |
temp = gr.Slider(0, 5, 1, label="Temperature", info="Temperature is..", interactive=True)
|
| 189 |
|
| 190 |
-
# Set up an action when the sliders change
|
| 191 |
temp.change(chatbot_model.set_temperature, inputs=[temp], outputs=[])
|
| 192 |
coeff.change(chatbot_model.set_coeff, inputs=[coeff], outputs=[])
|
| 193 |
-
chatbot_model.set_steering_vector_prompt(steering_prompt)
|
| 194 |
steering_prompt.change(chatbot_model.set_steering_vector_prompt, inputs=[steering_prompt], outputs=[])
|
| 195 |
|
| 196 |
demo.queue()
|
|
|
|
| 43 |
self.sae = sae
|
| 44 |
self.cfg_dict = cfg_dict
|
| 45 |
|
| 46 |
+
def get_feature_info(self):
|
| 47 |
+
projection_onto_unembed = self.sae.W_dec @ self.model.W_U
|
| 48 |
+
# get the top ten words associated with the given feature
|
| 49 |
+
WORD_COUNT = 10
|
| 50 |
+
_, inds = torch.topk(projection_onto_unembed, WORD_COUNT, dim=1)
|
| 51 |
+
|
| 52 |
+
_, sv_feature_acts = self._get_sae_out_and_feature_activations()
|
| 53 |
+
features = self._get_features(sv_feature_acts)
|
| 54 |
+
breakpoint();
|
| 55 |
+
associated_words = [self.model.to_str_tokens(inds[f]) for f in features]
|
| 56 |
+
return associated_words
|
| 57 |
+
|
| 58 |
def _get_sae_out_and_feature_activations(self):
|
| 59 |
+
# given the words in steering_vector_prompt, the SAE predicts that the neurons(aka features) in activateCache will be activated
|
| 60 |
sv_logits, activationCache = self.model.run_with_cache(self.steering_vector_prompt, prepend_bos=True)
|
| 61 |
sv_feature_acts = self.sae.encode(activationCache[self.sae.cfg.hook_name])
|
|
|
|
|
|
|
| 62 |
return self.sae.decode(sv_feature_acts), sv_feature_acts
|
| 63 |
|
| 64 |
def _hooked_generate(self, prompt_batch, fwd_hooks, seed=None, **kwargs):
|
|
|
|
| 79 |
# return torch.topk(sv_feature_acts, 1).indices.tolist()
|
| 80 |
features = torch.topk(sv_feature_activations, 1).indices
|
| 81 |
print(f'features that align with the text prompt: {features}')
|
| 82 |
+
return features[0]
|
|
|
|
|
|
|
| 83 |
|
| 84 |
def _get_steering_hook(self, feature, sae_out):
|
| 85 |
coeff = self.coeff
|
|
|
|
| 101 |
# and not use the seperate function _get_steering_hook()
|
| 102 |
sae_out, sv_feature_acts = self._get_sae_out_and_feature_activations()
|
| 103 |
features = self._get_features(sv_feature_acts)
|
| 104 |
+
steering_hooks = [self._get_steering_hook(feature, sae_out) for feature in features]
|
| 105 |
|
| 106 |
return steering_hooks
|
| 107 |
|
|
|
|
| 109 |
def _run_generate(self, example_prompt, steering_on: bool):
|
| 110 |
|
| 111 |
self.model.reset_hooks()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
if steering_on:
|
| 113 |
+
steer_hooks = self._get_steering_hooks()
|
| 114 |
+
editing_hooks = [ (self.sae_id, steer_hook) for steer_hook in steer_hooks]
|
| 115 |
+
print(f"steering by {len(editing_hooks)} hooks")
|
| 116 |
res = self._hooked_generate([example_prompt] * 3, editing_hooks, seed=None, **self.sampling_kwargs)
|
| 117 |
else:
|
| 118 |
tokenized = self.model.to_tokens([example_prompt])
|
|
|
|
| 135 |
|
| 136 |
|
| 137 |
|
| 138 |
+
# MODEL = "gemma-2b"
|
| 139 |
+
# PRETRAINED_SAE = "gemma-2b-res-jb"
|
| 140 |
MODEL = "gpt2-small"
|
| 141 |
PRETRAINED_SAE = "gpt2-small-res-jb"
|
| 142 |
LAYER = 10
|
| 143 |
+
chatbot_model = Inference(MODEL, PRETRAINED_SAE, LAYER)
|
| 144 |
|
| 145 |
|
| 146 |
import time
|
|
|
|
| 159 |
time.sleep(0.01)
|
| 160 |
yield result[: i + 1]
|
| 161 |
|
| 162 |
+
def populate_related_features():
|
| 163 |
+
features = chatbot_model.get_feature_info()
|
| 164 |
+
print(features)
|
| 165 |
+
return features[0]
|
| 166 |
+
# for feature in features:
|
| 167 |
+
# for i in range(len(feature)):
|
| 168 |
+
# time.sleep(0.01)
|
| 169 |
+
# yield feature[: i + 1]
|
| 170 |
+
|
| 171 |
with gr.Blocks() as demo:
|
| 172 |
with gr.Row():
|
| 173 |
gr.Markdown("*STANDARD HEXTER BOT*")
|
|
|
|
| 197 |
)
|
| 198 |
with gr.Row():
|
| 199 |
steering_prompt = gr.Textbox(label="Steering prompt", value="Golden Gate Bridge")
|
| 200 |
+
found_features = gr.Textbox(label="Found Features")
|
| 201 |
+
find_features = gr.Button("Find Related Features")
|
| 202 |
+
find_features.click(fn=populate_related_features,inputs=None, outputs=found_features)
|
| 203 |
with gr.Row():
|
| 204 |
coeff = gr.Slider(1, 1000, 300, label="Coefficient", info="Coefficient is..", interactive=True)
|
| 205 |
with gr.Row():
|
| 206 |
temp = gr.Slider(0, 5, 1, label="Temperature", info="Temperature is..", interactive=True)
|
| 207 |
|
|
|
|
| 208 |
temp.change(chatbot_model.set_temperature, inputs=[temp], outputs=[])
|
| 209 |
coeff.change(chatbot_model.set_coeff, inputs=[coeff], outputs=[])
|
| 210 |
+
chatbot_model.set_steering_vector_prompt(steering_prompt.value)
|
| 211 |
steering_prompt.change(chatbot_model.set_steering_vector_prompt, inputs=[steering_prompt], outputs=[])
|
| 212 |
|
| 213 |
demo.queue()
|