Spaces:
Runtime error
Runtime error
File size: 1,345 Bytes
b7c2f34 26f05ca b7c2f34 26f05ca b7c2f34 409e7ce b7c2f34 26f05ca b7c2f34 26f05ca b7c2f34 26f05ca b7c2f34 26f05ca b7c2f34 26f05ca b7c2f34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
import torch
from torchvision import transforms
from PIL import Image
# Load class names
with open("classes.txt", "r", encoding="utf-8") as f:
CLASSES = [line.strip() for line in f if line.strip()]
device = torch.device("cpu")
# Load trained model
model_path = "best_model.pth"
model = torch.load(model_path, map_location=device)
model.eval()
# Preprocessing for input images
preprocess = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]
),
])
def predict(image: Image.Image):
if image is None:
return {"error": 1.0}
image = image.convert("RGB")
x = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
logits = model(x)
probs = torch.softmax(logits, dim=1)[0]
# Build {label: prob} dict for Gradio Label output
return {
CLASSES[i]: float(probs[i])
for i in range(len(CLASSES))
}
demo = gr.Interface(
fn=predict,
inputs=gr.Image(type="pil", label="Upload a game cover"),
outputs=gr.Label(num_top_classes=3, label="Predicted genre"),
title="Video Game Genre Predictor",
description="Upload a video game cover to predict its genre."
)
if __name__ == "__main__":
demo.launch()
|