Spaces:
Running
Running
File size: 12,126 Bytes
128f5d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
---
title: BirdScope AI - MCP Multi-Agent System
emoji: π¦
colorFrom: green
colorTo: blue
sdk: gradio
python_version: 3.11
app_file: app.py
pinned: false
---
# π¦
BirdScope AI - Multi-Agent Bird Identification System
**AI-powered bird identification with specialized MCP agents**
Built for the [MCP 1st Birthday Hackathon](https://huggingface.co/MCP-1st-Birthday)
---
## π― Overview
BirdScope AI is a production-ready multi-agent system that combines **Modal GPU classification** with **Nuthatch species database** to provide comprehensive bird identification and exploration. Users can upload photos, search species, explore taxonomic families, and access rich multimedia content (images, audio recordings, conservation data).
**Two Agent Modes:**
1. **Specialized Subagents (3 Specialists)** - Router orchestrates image identifier, species explorer, and taxonomy specialist
2. **Audio Finder Agent** - Specialized agent for discovering bird audio recordings
---
## β¨ Features
- π **Image Classification**: Upload bird photos for instant GPU-powered identification
- πΈ **Reference Images**: High-quality Unsplash photos for each species
- π΅ **Audio Recordings**: Bird calls and songs from xeno-canto.org
- π **Conservation Data**: IUCN status and taxonomic information
- π§ **Multi-Agent Architecture**: Specialized agents with focused tool subsets
- π **Dual Streaming**: Separate outputs for chat responses and tool execution logs
- π€ **Multi-Provider**: OpenAI (GPT-4), Anthropic (Claude), HuggingFace (Qwen)
---
## π Quick Start (For Users)
### Option 1: OpenAI (Recommended)
1. Get your OpenAI API key from [platform.openai.com/api-keys](https://platform.openai.com/api-keys)
2. Select **OpenAI** as provider in the sidebar
3. Enter your API key
4. Model used: `gpt-4o-mini`
### Option 2: Anthropic (Claude)
1. Get your Anthropic API key from [console.anthropic.com/settings/keys](https://console.anthropic.com/settings/keys)
2. Select **Anthropic** as provider
3. Enter your API key
4. Model used: `claude-sonnet-4-5`
### Option 3: HuggingFace
β οΈ **Note**: HuggingFace Inference API has limited function calling support. OpenAI or Anthropic recommended for full functionality.
---
## π οΈ Environment Setup (For Developers)
### Prerequisites
- Python 3.11+
- Modal account (for GPU classifier)
- Nuthatch API key
- LLM API key (OpenAI, Anthropic, or HuggingFace)
---
### π Local Development Setup
#### Step 1: Clone and Install
```bash
cd ~/Desktop/hackathon/hackathon_draft
# Create virtual environment
python3.11 -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
```
#### Step 2: Configure Environment Variables
Create a `.env` file from the example:
```bash
cp .env.example .env
```
Edit `.env` with your API keys:
```bash
# ================================================
# REQUIRED: Modal Bird Classifier (GPU)
# ================================================
MODAL_MCP_URL=https://your-modal-app--mcp-server.modal.run/mcp
BIRD_CLASSIFIER_API_KEY=your-modal-api-key-here
# ================================================
# REQUIRED: Nuthatch Species Database
# ================================================
NUTHATCH_API_KEY=your-nuthatch-api-key-here
NUTHATCH_BASE_URL=https://nuthatch.lastelm.software/v2 # Default, can omit
# Nuthatch Transport Mode (STDIO or HTTP)
NUTHATCH_USE_STDIO=true # Recommended for local development
# Only needed if NUTHATCH_USE_STDIO=false:
# NUTHATCH_MCP_URL=http://localhost:8001/mcp
# NUTHATCH_MCP_AUTH_KEY=your-auth-key-here
# ================================================
# LLM Provider (Choose ONE)
# ================================================
# OpenAI (Recommended)
OPENAI_API_KEY=sk-your-openai-key-here
DEFAULT_OPENAI_MODEL=gpt-4o-mini
OPENAI_TEMPERATURE=0.0
# OR Anthropic
# ANTHROPIC_API_KEY=sk-ant-your-anthropic-key-here
# DEFAULT_ANTHROPIC_MODEL=claude-sonnet-4-5-20250929
# ANTHROPIC_TEMPERATURE=0.0
# OR HuggingFace (Limited function calling support)
# HF_API_KEY=hf_your-huggingface-token-here
# DEFAULT_HF_MODEL=Qwen/Qwen2.5-Coder-32B-Instruct
# HF_TEMPERATURE=0.1
```
#### Step 3: Understanding Nuthatch Transport Modes
**STDIO Mode (Recommended for Local):**
- Nuthatch MCP server runs as subprocess
- Automatically started by the app
- No separate server process needed
- Set `NUTHATCH_USE_STDIO=true`
**HTTP Mode (Alternative for Local):**
- Nuthatch MCP server runs as separate HTTP server
- Useful for debugging or multiple clients
- Requires running server in separate terminal
To use HTTP mode:
```bash
# Terminal 1: Run Nuthatch MCP server
python nuthatch_tools.py --http --port 8001
# Terminal 2: Run the app
# Set in .env:
# NUTHATCH_USE_STDIO=false
# NUTHATCH_MCP_URL=http://localhost:8001/mcp
python app.py
```
#### Step 4: Run the App
```bash
# With STDIO mode (default, easiest):
python app.py
# Or using Gradio CLI:
gradio app.py
```
App will be available at: `http://127.0.0.1:7860`
---
### βοΈ HuggingFace Spaces Deployment
#### Step 1: Create a New Space
1. Go to [huggingface.co/new-space](https://huggingface.co/new-space)
2. Choose:
- **SDK**: Gradio
- **Hardware**: CPU Basic (free) or CPU Upgrade (faster)
- **Visibility**: Public or Private
#### Step 2: Upload Your Code
**Option A: Using `upload_to_space.py` (Recommended)**
```bash
# 1. Install HuggingFace CLI
pip install huggingface_hub
# 2. Login
huggingface-cli login
# 3. Update upload_to_space.py with your Space name
# Edit line with repo_id:
# repo_id="YOUR-USERNAME/YOUR-SPACE-NAME"
# 4. Upload
python upload_to_space.py
```
**Option B: Using Git**
```bash
git remote add hf-space https://huggingface.co/spaces/YOUR-USERNAME/YOUR-SPACE-NAME
git push hf-space main
```
#### Step 3: Configure Secrets in HuggingFace Spaces
β οΈ **CRITICAL**: Spaces use **Secrets**, not `.env` files!
Go to your Space β **Settings** β **Variables and secrets**
**Add these secrets:**
```bash
# REQUIRED: Modal Bird Classifier
MODAL_MCP_URL = https://your-modal-app--mcp-server.modal.run/mcp
BIRD_CLASSIFIER_API_KEY = your-modal-api-key-here
# REQUIRED: Nuthatch Species Database
NUTHATCH_API_KEY = your-nuthatch-api-key-here
NUTHATCH_BASE_URL = https://nuthatch.lastelm.software/v2 # Optional
NUTHATCH_USE_STDIO = true # MUST be "true" for Spaces
# OPTIONAL: Backend-provided LLM keys (users can provide their own)
# Only add if you want to provide default keys:
# OPENAI_API_KEY = sk-your-key-here
# ANTHROPIC_API_KEY = sk-ant-your-key-here
```
**Important Notes:**
- β
**ALWAYS** use `NUTHATCH_USE_STDIO=true` on Spaces (subprocess mode)
- β
HTTP mode not supported on Spaces (port binding restrictions)
- β
Users can provide their own LLM keys via the UI
- β
Environment variables from Spaces **do not** auto-inherit to subprocesses
- The app explicitly passes `NUTHATCH_API_KEY` and `NUTHATCH_BASE_URL` to the subprocess (see `mcp_clients.py`)
#### Step 4: Verify Deployment
1. Wait for Space to build (2-5 minutes)
2. Check **Logs** tab for errors
3. Try the app - upload a bird photo or ask about species
---
## π Project Structure
```
hackathon_draft/
βββ app.py # Main Gradio app
βββ upload_to_space.py # HF Spaces upload script
βββ requirements.txt # Python dependencies
βββ .env.example # Environment template
βββ langgraph_agent/
β βββ __init__.py
β βββ agents.py # Agent factory (single/multi-agent)
β βββ config.py # Configuration loader
β βββ mcp_clients.py # MCP client setup
β βββ subagent_config.py # Agent mode definitions
β βββ prompts.py # System prompts
β βββ structured_output.py # Response formatting
βββ nuthatch_tools.py # Nuthatch MCP server
βββ agent_cache.py # Session-based agent caching
```
---
## ποΈ Architecture
### MCP Servers
**1. Modal Bird Classifier (GPU)**
- Hosted on Modal (serverless GPU)
- ResNet50 trained on 555 bird species
- Tools: `classify_from_url`, `classify_from_base64`
- Transport: Streamable HTTP
**2. Nuthatch Species Database**
- Species reference API (1000+ birds)
- Tools: `search_birds`, `get_bird_info`, `get_bird_images`, `get_bird_audio`, `search_by_family`, `filter_by_status`, `get_all_families`
- Transport: **STDIO** (subprocess on Spaces), STDIO or HTTP (local)
- Data sources: Unsplash (images), xeno-canto (audio)
### Agent Modes
**Mode 1: Specialized Subagents (3 Specialists)**
- **Router** orchestrates 3 specialized agents:
1. **Image Identifier**: classify images, show reference photos
2. **Species Explorer**: search by name, provide multimedia
3. **Taxonomy Specialist**: conservation status, family search
- Each specialist has focused tool subset
**Mode 2: Audio Finder Agent**
- Single specialized agent for finding bird audio
- Tools: `search_birds`, `get_bird_info`, `get_bird_audio`
- Optimized workflow for xeno-canto recordings
### Tech Stack
- **Frontend**: Gradio 6.0 with custom CSS (cloud/sky theme)
- **Agent Framework**: LangGraph with streaming
- **MCP Integration**: FastMCP client library
- **LLM Support**: OpenAI, Anthropic, HuggingFace
- **Session Management**: In-memory agent caching
- **Output Parsing**: LlamaIndex Pydantic + regex (optimized)
---
## π¨ Special Features
### Dual Streaming Output
- **Chat Panel**: LLM responses with markdown rendering
- **Tool Log Panel**: Real-time tool execution traces (inputs/outputs)
### Dynamic Examples
- Examples change based on selected agent mode
- Photo examples always visible
- Text examples adapt to Audio Finder vs Multi-Agent
### Structured Output
- Automatic image/audio URL extraction
- Markdown formatting for media
- xeno-canto audio links (browser-friendly)
---
## π API Key Sources
| Service | Get Key From | Purpose |
|---------|-------------|---------|
| **Modal** | [modal.com](https://modal.com) | GPU bird classifier |
| **Nuthatch** | [nuthatch.lastelm.software](https://nuthatch.lastelm.software) | Species database |
| **OpenAI** | [platform.openai.com/api-keys](https://platform.openai.com/api-keys) | LLM (recommended) |
| **Anthropic** | [console.anthropic.com/settings/keys](https://console.anthropic.com/settings/keys) | LLM (Claude) |
| **HuggingFace** | [huggingface.co/settings/tokens](https://huggingface.co/settings/tokens) | LLM (limited support) |
---
## π Troubleshooting
### Space stuck on "Building"
- Check **Logs** tab for errors
- Verify all required secrets are set
- Try Factory Reboot (Settings β Factory Reboot)
### "Invalid API key" errors
- Ensure secrets are set correctly (no quotes needed)
- Check secret names match exactly (case-sensitive)
### HuggingFace provider fails with "function calling not support"
- HuggingFace Inference API has limited tool calling
- Use OpenAI or Anthropic instead
### Nuthatch server not starting (local)
- Check `NUTHATCH_API_KEY` is set in `.env`
- Verify API key is valid
- Try STDIO mode: `NUTHATCH_USE_STDIO=true`
### Audio links broken
- Check AUDIO_FINDER_PROMPT is working
- Verify xeno-canto URLs include `/download`
- Check structured output parsing logs
---
## π Documentation
For detailed implementation docs, see:
- `project_docs/implementation/phase_5_final.md` - Complete agent architecture
- `project_docs/commands_guide/git_spaces_cheatsheet.md` - Deployment guide
---
## π Credits
- **Bird Species Data**: [Nuthatch API](https://nuthatch.lastelm.software) by Last Elm Software
- **Bird Audio**: [xeno-canto.org](https://xeno-canto.org) - Community bird recordings
- **Reference Images**: [Unsplash](https://unsplash.com) + curated collections
- **MCP Protocol**: [Anthropic Model Context Protocol](https://github.com/anthropics/mcp)
- **Hackathon**: [HuggingFace MCP-1st-Birthday](https://huggingface.co/MCP-1st-Birthday)
---
## π License
MIT License - Built for educational and research purposes
|