Spaces:
Running
Running
File size: 12,189 Bytes
9ce984a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
"""
Title: Semantic Similarity with BERT
Author: [Mohamad Merchant](https://twitter.com/mohmadmerchant1)
Date created: 2020/08/15
Last modified: 2020/08/29
Description: Natural Language Inference by fine-tuning BERT model on SNLI Corpus.
Accelerator: GPU
"""
"""
## Introduction
Semantic Similarity is the task of determining how similar
two sentences are, in terms of what they mean.
This example demonstrates the use of SNLI (Stanford Natural Language Inference) Corpus
to predict sentence semantic similarity with Transformers.
We will fine-tune a BERT model that takes two sentences as inputs
and that outputs a similarity score for these two sentences.
### References
* [BERT](https://arxiv.org/pdf/1810.04805.pdf)
* [SNLI](https://nlp.stanford.edu/projects/snli/)
"""
"""
## Setup
Note: install HuggingFace `transformers` via `pip install transformers` (version >= 2.11.0).
"""
import numpy as np
import pandas as pd
import tensorflow as tf
import transformers
"""
## Configuration
"""
max_length = 128 # Maximum length of input sentence to the model.
batch_size = 32
epochs = 2
# Labels in our dataset.
labels = ["contradiction", "entailment", "neutral"]
"""
## Load the Data
"""
"""shell
curl -LO https://raw.githubusercontent.com/MohamadMerchant/SNLI/master/data.tar.gz
tar -xvzf data.tar.gz
"""
# There are more than 550k samples in total; we will use 100k for this example.
train_df = pd.read_csv("SNLI_Corpus/snli_1.0_train.csv", nrows=100000)
valid_df = pd.read_csv("SNLI_Corpus/snli_1.0_dev.csv")
test_df = pd.read_csv("SNLI_Corpus/snli_1.0_test.csv")
# Shape of the data
print(f"Total train samples : {train_df.shape[0]}")
print(f"Total validation samples: {valid_df.shape[0]}")
print(f"Total test samples: {valid_df.shape[0]}")
"""
Dataset Overview:
- sentence1: The premise caption that was supplied to the author of the pair.
- sentence2: The hypothesis caption that was written by the author of the pair.
- similarity: This is the label chosen by the majority of annotators.
Where no majority exists, the label "-" is used (we will skip such samples here).
Here are the "similarity" label values in our dataset:
- Contradiction: The sentences share no similarity.
- Entailment: The sentences have similar meaning.
- Neutral: The sentences are neutral.
"""
"""
Let's look at one sample from the dataset:
"""
print(f"Sentence1: {train_df.loc[1, 'sentence1']}")
print(f"Sentence2: {train_df.loc[1, 'sentence2']}")
print(f"Similarity: {train_df.loc[1, 'similarity']}")
"""
## Preprocessing
"""
# We have some NaN entries in our train data, we will simply drop them.
print("Number of missing values")
print(train_df.isnull().sum())
train_df.dropna(axis=0, inplace=True)
"""
Distribution of our training targets.
"""
print("Train Target Distribution")
print(train_df.similarity.value_counts())
"""
Distribution of our validation targets.
"""
print("Validation Target Distribution")
print(valid_df.similarity.value_counts())
"""
The value "-" appears as part of our training and validation targets.
We will skip these samples.
"""
train_df = (
train_df[train_df.similarity != "-"]
.sample(frac=1.0, random_state=42)
.reset_index(drop=True)
)
valid_df = (
valid_df[valid_df.similarity != "-"]
.sample(frac=1.0, random_state=42)
.reset_index(drop=True)
)
"""
One-hot encode training, validation, and test labels.
"""
train_df["label"] = train_df["similarity"].apply(
lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2
)
y_train = tf.keras.utils.to_categorical(train_df.label, num_classes=3)
valid_df["label"] = valid_df["similarity"].apply(
lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2
)
y_val = tf.keras.utils.to_categorical(valid_df.label, num_classes=3)
test_df["label"] = test_df["similarity"].apply(
lambda x: 0 if x == "contradiction" else 1 if x == "entailment" else 2
)
y_test = tf.keras.utils.to_categorical(test_df.label, num_classes=3)
"""
## Create a custom data generator
"""
class BertSemanticDataGenerator(tf.keras.utils.Sequence):
"""Generates batches of data.
Args:
sentence_pairs: Array of premise and hypothesis input sentences.
labels: Array of labels.
batch_size: Integer batch size.
shuffle: boolean, whether to shuffle the data.
include_targets: boolean, whether to include the labels.
Returns:
Tuples `([input_ids, attention_mask, `token_type_ids], labels)`
(or just `[input_ids, attention_mask, `token_type_ids]`
if `include_targets=False`)
"""
def __init__(
self,
sentence_pairs,
labels,
batch_size=batch_size,
shuffle=True,
include_targets=True,
):
self.sentence_pairs = sentence_pairs
self.labels = labels
self.shuffle = shuffle
self.batch_size = batch_size
self.include_targets = include_targets
# Load our BERT Tokenizer to encode the text.
# We will use base-base-uncased pretrained model.
self.tokenizer = transformers.BertTokenizer.from_pretrained(
"bert-base-uncased", do_lower_case=True
)
self.indexes = np.arange(len(self.sentence_pairs))
self.on_epoch_end()
def __len__(self):
# Denotes the number of batches per epoch.
return len(self.sentence_pairs) // self.batch_size
def __getitem__(self, idx):
# Retrieves the batch of index.
indexes = self.indexes[idx * self.batch_size : (idx + 1) * self.batch_size]
sentence_pairs = self.sentence_pairs[indexes]
# With BERT tokenizer's batch_encode_plus batch of both the sentences are
# encoded together and separated by [SEP] token.
encoded = self.tokenizer.batch_encode_plus(
sentence_pairs.tolist(),
add_special_tokens=True,
max_length=max_length,
return_attention_mask=True,
return_token_type_ids=True,
pad_to_max_length=True,
return_tensors="tf",
)
# Convert batch of encoded features to numpy array.
input_ids = np.array(encoded["input_ids"], dtype="int32")
attention_masks = np.array(encoded["attention_mask"], dtype="int32")
token_type_ids = np.array(encoded["token_type_ids"], dtype="int32")
# Set to true if data generator is used for training/validation.
if self.include_targets:
labels = np.array(self.labels[indexes], dtype="int32")
return [input_ids, attention_masks, token_type_ids], labels
else:
return [input_ids, attention_masks, token_type_ids]
def on_epoch_end(self):
# Shuffle indexes after each epoch if shuffle is set to True.
if self.shuffle:
np.random.RandomState(42).shuffle(self.indexes)
"""
## Build the model
"""
# Create the model under a distribution strategy scope.
strategy = tf.distribute.MirroredStrategy()
with strategy.scope():
# Encoded token ids from BERT tokenizer.
input_ids = tf.keras.layers.Input(
shape=(max_length,), dtype=tf.int32, name="input_ids"
)
# Attention masks indicates to the model which tokens should be attended to.
attention_masks = tf.keras.layers.Input(
shape=(max_length,), dtype=tf.int32, name="attention_masks"
)
# Token type ids are binary masks identifying different sequences in the model.
token_type_ids = tf.keras.layers.Input(
shape=(max_length,), dtype=tf.int32, name="token_type_ids"
)
# Loading pretrained BERT model.
bert_model = transformers.TFBertModel.from_pretrained("bert-base-uncased")
# Freeze the BERT model to reuse the pretrained features without modifying them.
bert_model.trainable = False
bert_output = bert_model.bert(
input_ids, attention_mask=attention_masks, token_type_ids=token_type_ids
)
sequence_output = bert_output.last_hidden_state
pooled_output = bert_output.pooler_output
# Add trainable layers on top of frozen layers to adapt the pretrained features on the new data.
bi_lstm = tf.keras.layers.Bidirectional(
tf.keras.layers.LSTM(64, return_sequences=True)
)(sequence_output)
# Applying hybrid pooling approach to bi_lstm sequence output.
avg_pool = tf.keras.layers.GlobalAveragePooling1D()(bi_lstm)
max_pool = tf.keras.layers.GlobalMaxPooling1D()(bi_lstm)
concat = tf.keras.layers.concatenate([avg_pool, max_pool])
dropout = tf.keras.layers.Dropout(0.3)(concat)
output = tf.keras.layers.Dense(3, activation="softmax")(dropout)
model = tf.keras.models.Model(
inputs=[input_ids, attention_masks, token_type_ids], outputs=output
)
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss="categorical_crossentropy",
metrics=["acc"],
)
print(f"Strategy: {strategy}")
model.summary()
"""
Create train and validation data generators
"""
train_data = BertSemanticDataGenerator(
train_df[["sentence1", "sentence2"]].values.astype("str"),
y_train,
batch_size=batch_size,
shuffle=True,
)
valid_data = BertSemanticDataGenerator(
valid_df[["sentence1", "sentence2"]].values.astype("str"),
y_val,
batch_size=batch_size,
shuffle=False,
)
"""
## Train the Model
Training is done only for the top layers to perform "feature extraction",
which will allow the model to use the representations of the pretrained model.
"""
history = model.fit(
train_data,
validation_data=valid_data,
epochs=epochs,
use_multiprocessing=True,
workers=-1,
)
"""
## Fine-tuning
This step must only be performed after the feature extraction model has
been trained to convergence on the new data.
This is an optional last step where `bert_model` is unfreezed and retrained
with a very low learning rate. This can deliver meaningful improvement by
incrementally adapting the pretrained features to the new data.
"""
# Unfreeze the bert_model.
bert_model.trainable = True
# Recompile the model to make the change effective.
model.compile(
optimizer=tf.keras.optimizers.Adam(1e-5),
loss="categorical_crossentropy",
metrics=["accuracy"],
)
model.summary()
"""
## Train the entire model end-to-end
"""
history = model.fit(
train_data,
validation_data=valid_data,
epochs=epochs,
use_multiprocessing=True,
workers=-1,
)
"""
## Evaluate model on the test set
"""
test_data = BertSemanticDataGenerator(
test_df[["sentence1", "sentence2"]].values.astype("str"),
y_test,
batch_size=batch_size,
shuffle=False,
)
model.evaluate(test_data, verbose=1)
"""
## Inference on custom sentences
"""
def check_similarity(sentence1, sentence2):
sentence_pairs = np.array([[str(sentence1), str(sentence2)]])
test_data = BertSemanticDataGenerator(
sentence_pairs,
labels=None,
batch_size=1,
shuffle=False,
include_targets=False,
)
proba = model.predict(test_data[0])[0]
idx = np.argmax(proba)
proba = f"{proba[idx]: .2f}%"
pred = labels[idx]
return pred, proba
"""
Check results on some example sentence pairs.
"""
sentence1 = "Two women are observing something together."
sentence2 = "Two women are standing with their eyes closed."
check_similarity(sentence1, sentence2)
"""
Check results on some example sentence pairs.
"""
sentence1 = "A smiling costumed woman is holding an umbrella"
sentence2 = "A happy woman in a fairy costume holds an umbrella"
check_similarity(sentence1, sentence2)
"""
Check results on some example sentence pairs
"""
sentence1 = "A soccer game with multiple males playing"
sentence2 = "Some men are playing a sport"
check_similarity(sentence1, sentence2)
"""
Example available on HuggingFace
| Trained Model | Demo |
| :--: | :--: |
| [](https://huggingface.co/keras-io/bert-semantic-similarity) | [](https://huggingface.co/spaces/keras-io/bert-semantic-similarity) |
"""
|