File size: 31,383 Bytes
2ba8e82 6cdbf89 7e75fff 6cdbf89 2ba8e82 6cdbf89 2ba8e82 8fb64cb 2ba8e82 8fb64cb 2ba8e82 8fb64cb 2ba8e82 8fb64cb 2ba8e82 8fb64cb 2ba8e82 7e75fff 2ba8e82 7e75fff 2ba8e82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 |
import sys
import ast
import logging
import traceback
from pathlib import Path
from mcp.server.fastmcp import FastMCP
import json
from services.code_generation_service import CodeGenerator
from services.project_service import ProjectAnalyzer
from services.refactoring_service import RefactoringAdvisor
import os
from dotenv import load_dotenv
from services.sequence_service import ProjectSequenceAnalyzer, SequenceDiagramService
from services.usecase_service import UseCaseDiagramService
load_dotenv()
# --- π‘οΈ PROTOCOL PROTECTION & LOGGING SETUP π‘οΈ ---
os.environ.setdefault("MODAL_TOKEN_ID", os.getenv("MODAL_TOKEN_ID", ""))
os.environ.setdefault("MODAL_TOKEN_SECRET", os.getenv("MODAL_TOKEN_SECRET", ""))
logging.basicConfig(
level=logging.INFO,
stream=sys.stderr,
format='%(message)s'
)
for lib in ["httpx", "httpcore", "asyncio"]:
logging.getLogger(lib).setLevel(logging.WARNING)
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent))
# 1. Initialize MCP Server
mcp = FastMCP("ArchitectAI", dependencies=["langchain-openai", "langchain-core"])
# 2. Import Core Logic
try:
from core.llm_factory import create_sambanova_llm, create_nebius_llm, create_openai_llm, create_gemini_llm
from services.filesystem_service import FileSystemVisitor, TreeFormatter
from services.architecture_service import (
ArchitectureVisitor, FastTypeEnricher, DeterministicPlantUMLConverter
)
logging.info("β
All services imported successfully")
except ImportError as e:
logging.error(f"β Critical Import Error: {e}")
raise
try:
import modal
modal_function = modal.Function.from_name("architect-ai-surgeon", "safe_refactor_and_test")
logging.info("βοΈ Modal Function imported successfully.")
except ImportError:
logging.warning("β οΈ Could not import modal_executor function. Cloud features disabled.")
modal_function = None
# --- π‘οΈ SANDBOX CONFIGURATION π‘οΈ ---
def _find_project_root(start_path: Path) -> Path:
"""
Searches upwards for a marker that indicates the project root
(like .git, pyproject.toml, or requirements.txt).
Falls back to CWD if nothing is found.
"""
current = start_path.resolve()
for parent in [current] + list(current.parents):
# Check for common project markers
if (parent / ".git").exists() or \
(parent / "pyproject.toml").exists() or \
(parent / "requirements.txt").exists():
return parent
# Fallback: If no marker found, use the Current Working Directory (where you ran the command)
return Path.cwd().resolve()
# 1. Start searching from the location of this script
_script_location = Path(__file__).parent
# 2. Determine the actual project root dynamically
SANDBOX_ROOT = _find_project_root(_script_location)
logging.info(f"π Project Root Detected at: {SANDBOX_ROOT}")
BLOCKED_PATHS = {
SANDBOX_ROOT / ".venv",
SANDBOX_ROOT / "venv",
SANDBOX_ROOT / ".git",
SANDBOX_ROOT / ".env",
SANDBOX_ROOT / "__pycache__",
}
# --- π§ SINGLETON LLM CLIENT π§ ---
class LLMClientSingleton:
"""
Singleton pattern for LLM client.
Ensures only ONE instance of the LLM client is created and reused.
"""
_instance = None
_llm_client = None
_current_provider = None
def __new__(cls):
if cls._instance is None:
cls._instance = super().__new__(cls)
logging.info("ποΈ Creating LLM Singleton instance...")
return cls._instance
def get_client(self, preferred_provider: str = "sambanova", temperature: float = 0.0):
"""
Get or initialize the LLM client.
Only creates a new client if provider changes.
"""
# Return cached client if provider hasn't changed
if self._llm_client is not None and self._current_provider == preferred_provider:
logging.debug(f"β»οΈ Reusing cached {preferred_provider} client")
return self._llm_client
# Create new client if provider changed
logging.info(f"π Initializing {preferred_provider} LLM client...")
strategies = [
("sambanova", create_sambanova_llm),
("gemini", create_gemini_llm),
("nebius", create_nebius_llm),
("openai", create_openai_llm)
]
if preferred_provider == "gemini":
strategies = [
("gemini", create_gemini_llm),
("sambanova", create_sambanova_llm),
("nebius", create_nebius_llm),
("openai", create_openai_llm)
]
elif preferred_provider == "nebius":
strategies = [
("nebius", create_nebius_llm),
("gemini", create_gemini_llm),
("openai", create_openai_llm),
("sambanova", create_sambanova_llm)
]
elif preferred_provider == "openai":
strategies = [
("openai", create_openai_llm),
("gemini", create_gemini_llm),
("nebius", create_nebius_llm),
("sambanova", create_sambanova_llm)
]
for name, factory in strategies:
try:
logging.info(f"π Attempting to connect to {name}...")
self._llm_client = factory(temperature=temperature)
self._current_provider = name
logging.info(f"β
Connected to {name} (cached for reuse)")
return self._llm_client
except Exception as e:
logging.warning(f"β οΈ {name} failed: {str(e)[:100]}...")
logging.error("β No LLM provider available!")
self._llm_client = None
self._current_provider = None
return None
def reset(self):
"""Force reset the cached client (useful for testing)."""
logging.info("π Resetting LLM Singleton...")
self._llm_client = None
self._current_provider = None
# Global singleton instance
_llm_singleton = LLMClientSingleton()
def _validate_path(user_path: str, operation: str = "read") -> tuple[bool, Path, str]:
"""
Validates that a user-provided path is within the sandbox.
Returns:
(is_valid, resolved_path, error_message)
"""
try:
requested = Path(user_path).resolve()
sandbox_root = SANDBOX_ROOT.resolve()
try:
requested.relative_to(sandbox_root)
except ValueError:
return False, requested, f"β Access Denied: Path '{user_path}' is outside project directory"
if requested in BLOCKED_PATHS or any(requested.is_relative_to(bp) for bp in BLOCKED_PATHS if bp.exists()):
return False, requested, f"β Access Denied: Cannot access '{requested.name}' (protected directory)"
if not requested.exists():
return False, requested, f"β Path not found: '{user_path}'"
if operation == "read":
if requested.is_dir():
return False, requested, f"β '{user_path}' is a directory. Use list_project_structure() instead"
if not requested.is_file():
return False, requested, f"β '{user_path}' is not a regular file"
elif operation == "list":
if not requested.is_dir():
return False, requested, f"β '{user_path}' is not a directory"
logging.debug(f"β Path validation passed: {requested}")
return True, requested, ""
except Exception as e:
return False, Path(user_path), f"β Path validation error: {str(e)}"
# --- MCP TOOLS ---
@mcp.tool()
def generate_architecture_diagram(code: str, enrich: bool = True, provider: str = "sambanova") -> str:
"""
Analyzes Python code and generates a PlantUML Class Diagram.
Uses singleton LLM client for efficiency.
"""
try:
# 1. Static Analysis (Fast & Deterministic)
try:
tree = ast.parse(code)
visitor = ArchitectureVisitor()
visitor.visit(tree)
logging.info(f"β Static analysis: {len(visitor.structure)} classes found")
except SyntaxError as se:
return f"β Syntax Error in code: {se}"
# 2. AI Enrichment (Optional & Hybrid) - Using Singleton
if enrich and visitor.structure:
# π§ GET SINGLETON CLIENT
llm = _llm_singleton.get_client(preferred_provider=provider, temperature=0.0)
if llm:
try:
enricher = FastTypeEnricher(llm)
visitor.structure = enricher.enrich(code, visitor.structure)
logging.info("β Type enrichment complete")
except Exception as e:
logging.error(f"β οΈ Enrichment failed (skipping): {e}")
else:
logging.warning("β οΈ Skipping enrichment: No LLM provider available")
# 3. Visualization (Deterministic)
converter = DeterministicPlantUMLConverter()
result = converter.convert(visitor.structure)
logging.info("β Diagram generated successfully")
return result
except Exception as e:
logging.error(f"β Unexpected error: {e}")
traceback.print_exc(file=sys.stderr)
return f"β Processing failed: {str(e)}"
@mcp.tool()
def list_project_structure(path: str = ".", style: str = "tree") -> str:
"""
Deterministically maps the folder structure.
Args:
path: The root directory to list.
style: 'tree' for visual string, 'json' for structured data (easier for coding).
π‘οΈ Sandboxed: Can only list directories within the project.
"""
try:
# π‘οΈ SANDBOX CHECK
is_valid, resolved_path, error_msg = _validate_path(path, operation="list")
if not is_valid:
logging.warning(f"π« Sandbox violation attempt: {error_msg}")
return error_msg
# 1. Get Raw Data (Dictionary)
visitor = FileSystemVisitor()
tree_data = visitor.visit(str(resolved_path))
# 2. Format Output based on Style
if style == "json":
result = json.dumps(tree_data, indent=2)
else:
formatter = TreeFormatter()
result = formatter.format(tree_data)
logging.info(f"β Listed directory: {resolved_path} (style={style})")
return result
except Exception as e:
logging.error(f"β Directory listing failed: {e}")
return f"Error listing directory: {e}"
@mcp.tool()
def read_file(path: str) -> str:
"""
Reads the full content of a specific file.
Use this to inspect code before generating diagrams.
π‘οΈ Sandboxed: Can only read files within the project.
"""
try:
is_valid, resolved_path, error_msg = _validate_path(path, operation="read")
if not is_valid:
logging.warning(f"π« Sandbox violation attempt: {error_msg}")
return error_msg
content = resolved_path.read_text(encoding='utf-8', errors='replace')
logging.info(f"β Read file: {resolved_path.name} ({len(content)} chars)")
return content
except Exception as e:
logging.error(f"β Read failed: {e}")
return f"β Error reading file: {str(e)}"
@mcp.tool()
def generate_full_project_diagram(path: str = ".", enrich: bool = False, provider: str = "sambanova") -> str:
"""
Analyzes the ENTIRE project directory and generates a massive Class Diagram.
Args:
path: Root directory to analyze.
enrich: If True, uses AI to infer types (Can be slow for big projects).
"""
try:
# 1. Security Check
is_valid, resolved_path, error_msg = _validate_path(path, operation="list")
if not is_valid:
return error_msg
# 2. Analyze Project (The Aggregation)
analyzer = ProjectAnalyzer(resolved_path)
full_structure = analyzer.analyze()
if not full_structure:
return "β οΈ No Python code found in this directory."
# 3. AI Enrichment (Optional Batch Processing)
# Warning: For huge projects, we might want to limit this or do it in chunks.
if enrich:
# We construct a "Virtual" code context combining all files?
# OR we just skip enrichment for the full map to save tokens.
# For now, let's SKIP enrichment for the full view to be fast.
logging.info("βΉοΈ Skipping AI enrichment for full project to ensure speed.")
pass
# 4. Convert to PlantUML
converter = DeterministicPlantUMLConverter()
puml_code = converter.convert(full_structure)
logging.info(f"β Generated full project diagram ({len(full_structure)} items)")
return puml_code
except Exception as e:
logging.error(f"β Project analysis failed: {e}")
return f"Error analyzing project: {str(e)}"
@mcp.tool()
def propose_architecture_refactoring(path: str = ".") -> str:
"""
Analyzes the project and returns a JSON proposal with 'proposed_uml'.
Use this to visualize changes BEFORE applying them.
"""
try:
# 1. Scan Project
is_valid, resolved_path, error_msg = _validate_path(path, operation="list")
if not is_valid: return error_msg
analyzer = ProjectAnalyzer(resolved_path)
structure = analyzer.analyze()
if not structure: return "Error: No code found."
# 2. Generate Proposal
advisor = RefactoringAdvisor()
proposal = advisor.propose_improvement(structure)
# Return as pretty string for the Agent/User to read
return json.dumps(proposal, indent=2)
except Exception as e:
return f"Error generating proposal: {e}"
@mcp.tool()
def apply_refactoring(file_path: str, instruction: str) -> str:
"""
APPLIES CHANGES TO THE FILE.
WARNING: This overwrites the file. Use only on 'ai_architect - Copy'.
Args:
file_path: Relative path (e.g., 'core/llm_factory.py').
instruction: What to do (e.g., 'Refactor to Singleton pattern').
"""
try:
# 1. Security Check
target_file = SANDBOX_ROOT / file_path
if not target_file.exists():
return f"β File not found: {file_path}"
original_code = target_file.read_text(encoding='utf-8')
generator = CodeGenerator()
new_code = generator.generate_refactored_code(original_code, instruction, file_path)
saved_path = generator.save_code(file_path, new_code, SANDBOX_ROOT)
return f"β
File updated successfully: {saved_path}"
except Exception as e:
return f"β Error: {e}"
@mcp.tool()
def apply_refactoring_safely(
file_path: str,
instruction: str,
test_file: str = None
) -> str:
"""
Safely refactors code with automatic testing.
Uses Modal sandbox if available, falls back to local LLM if not.
Args:
file_path: Path to file to refactor
instruction: Refactoring instructions
test_file: Optional path to test file
"""
try:
# 1. Read original code
target = SANDBOX_ROOT / file_path
if not target.exists():
return f"β File not found: {file_path}"
original_code = target.read_text(encoding='utf-8')
# 2. Read tests if provided
test_code = None
if test_file:
test_path = SANDBOX_ROOT / test_file
if test_path.exists():
test_code = test_path.read_text(encoding='utf-8')
# 3. Try Modal sandbox first
if modal_function is not None:
try:
logging.info("π Sending to Modal sandbox...")
result = modal_function.remote(
original_code,
instruction,
test_code
)
# 4. Check results
if not result["success"]:
return f"β Refactoring failed: {result['error']}"
if not result["test_results"]["passed"]:
return f"""
β οΈ Refactoring succeeded but tests FAILED:
{result['test_results']['output']}
Code was NOT saved. Review and fix tests first.
"""
# 5. Save only if tests passed
target.write_text(result["new_code"], encoding='utf-8')
return f"""
β
Refactoring completed successfully in Modal sandbox!
π Tests: PASSED β
πΎ File saved: {file_path}
Test output:
{result['test_results']['output']}
"""
except Exception as modal_error:
logging.warning(f"β οΈ Modal sandbox failed: {str(modal_error)[:100]}... Falling back to local refactoring.")
# 4. Fallback: Local LLM refactoring (no testing)
logging.info("π§ Using local LLM for refactoring (testing disabled)...")
llm = _llm_singleton.get_client(preferred_provider="openai", temperature=0.0)
if llm is None:
return "β No LLM available for refactoring (Modal and local LLM both failed)"
from langchain_core.messages import SystemMessage, HumanMessage
system_msg = SystemMessage(content=
"You are a Senior Python Refactoring Engineer. "
"Rewrite the provided code to meet the user's architectural instructions "
"while preserving the original business logic."
)
user_msg = HumanMessage(content=f"""
Refactor this Python code according to these instructions:
**Instructions:** {instruction}
**Original Code:**
```python
{original_code}
```
Return ONLY the refactored code, no explanations.
""")
try:
response = llm.invoke([system_msg, user_msg])
new_code = response.content
# Clean up markdown if present
if "```python" in new_code:
new_code = new_code.split("```python")[1].split("```")[0].strip()
elif "```" in new_code:
new_code = new_code.split("```")[1].split("```")[0].strip()
# Save the refactored code
target.write_text(new_code, encoding='utf-8')
return f"""
β
Refactoring completed successfully (Local LLM)!
πΎ File saved: {file_path}
β οΈ Note: Testing was skipped (Modal not available). Please verify manually.
Refactored code preview:
```python
{new_code[:500]}...
```
"""
except Exception as llm_error:
return f"β Local LLM refactoring failed: {str(llm_error)}"
except Exception as e:
logging.error(f"β Refactoring error: {e}")
return f"β Error: {e}"
@mcp.tool()
def generate_usecase_diagram(code: str, enrich: bool = True, provider: str = "sambanova") -> str:
"""
Analyzes Python code and generates a PlantUML Use Case Diagram.
Detects:
- Service classes (patterns: *Service, *Controller, *Handler, *API)
- FastAPI/Flask endpoints (@app.get, @router.post, etc.)
- Public methods as potential use cases
Args:
code: Python source code to analyze
enrich: If True, uses AI to infer actors and relationships
provider: LLM provider ("sambanova", "nebius", "openai")
Returns:
PlantUML use case diagram string
"""
try:
# Get LLM client (using singleton)
llm = None
if enrich:
llm = _llm_singleton.get_client(preferred_provider=provider, temperature=0.0)
# Generate diagram
service = UseCaseDiagramService(llm=llm)
result = service.generate(code, enrich=enrich)
logging.info("β Use case diagram generated successfully")
return result
except Exception as e:
logging.error(f"β Use case diagram failed: {e}")
traceback.print_exc(file=sys.stderr)
return f"' β Error: {str(e)}"
@mcp.tool()
def generate_full_project_usecase_diagram(path: str = ".", enrich: bool = True, provider: str = "sambanova") -> str:
"""
Analyzes the ENTIRE project directory and generates a Use Case Diagram.
Scans all .py files for services, controllers, and endpoints.
Args:
path: Root directory to analyze
enrich: If True, uses AI to infer actors
provider: LLM provider
Returns:
PlantUML use case diagram string
"""
try:
# Security check
is_valid, resolved_path, error_msg = _validate_path(path, operation="list")
if not is_valid:
return error_msg
# Collect all Python files
combined_code = []
file_count = 0
for file_path in resolved_path.rglob("*.py"):
parts = file_path.parts
if any(p.startswith(".") or p in ["venv", "env", "__pycache__", "node_modules"] for p in parts):
continue
try:
code = file_path.read_text(encoding='utf-8', errors='replace')
combined_code.append(f"# === File: {file_path.name} ===\n{code}")
file_count += 1
except Exception:
continue
if not combined_code:
return "' β οΈ No Python files found in directory"
# Get LLM client
llm = None
if enrich:
llm = _llm_singleton.get_client(preferred_provider=provider, temperature=0.0)
# Generate diagram from combined code
service = UseCaseDiagramService(llm=llm)
# Limit code size to avoid token limits
full_code = "\n\n".join(combined_code)[:50000]
result = service.generate(full_code, enrich=enrich)
logging.info(f"β Project use case diagram generated ({file_count} files)")
return result
except Exception as e:
logging.error(f"β Project use case diagram failed: {e}")
return f"' β Error: {str(e)}"
@mcp.tool()
def generate_sequence_diagram(
code: str,
entry_method: str = None,
enrich: bool = True,
provider: str = "sambanova"
) -> str:
"""
Analyzes Python code and generates a PlantUML Sequence Diagram.
Traces method calls through:
- self.dependency.method() patterns
- Control flow (if/else, loops, try/except)
- Async operations
Args:
code: Python source code to analyze
entry_method: Starting point (e.g., "OrderService.create_order")
If None, auto-detects the method with most calls
enrich: If True, uses AI to improve readability
provider: LLM provider ("sambanova", "nebius", "openai")
Returns:
PlantUML sequence diagram string
"""
try:
# Get LLM client
llm = None
if enrich:
llm = _llm_singleton.get_client(preferred_provider=provider, temperature=0.0)
# Generate diagram
service = SequenceDiagramService(llm=llm)
result = service.generate(code, entry_method=entry_method, enrich=enrich)
logging.info(f"β Sequence diagram generated (entry: {entry_method or 'auto'})")
return result
except Exception as e:
logging.error(f"β Sequence diagram failed: {e}")
traceback.print_exc(file=sys.stderr)
return f"' β Error: {str(e)}"
@mcp.tool()
def generate_full_project_sequence_diagram(
path: str = ".",
entry_method: str = None,
enrich: bool = False,
provider: str = "sambanova"
) -> str:
"""
Analyzes ENTIRE project and generates a cross-file Sequence Diagram.
Scans all .py files and traces method calls across modules.
Args:
path: Root directory to analyze
entry_method: Starting point (e.g., "OrderService.create_order")
enrich: If True, uses AI to improve readability
provider: LLM provider
Returns:
PlantUML sequence diagram string
"""
try:
# Security check
is_valid, resolved_path, error_msg = _validate_path(path, operation="list")
if not is_valid:
return error_msg
# Collect all Python files
file_contents = {}
for file_path in resolved_path.rglob("*.py"):
parts = file_path.parts
if any(p.startswith(".") or p in ["venv", "env", "__pycache__", ".git"] for p in parts):
continue
try:
file_contents[file_path.name] = file_path.read_text(encoding='utf-8', errors='replace')
except Exception:
continue
if not file_contents:
return "' β οΈ No Python files found in directory"
# Get LLM client
llm = None
if enrich:
llm = _llm_singleton.get_client(preferred_provider=provider, temperature=0.0)
# Analyze project
analyzer = ProjectSequenceAnalyzer(llm=llm)
analyzer.analyze_files(file_contents)
# Auto-detect entry if not provided
if not entry_method:
candidates = [
(m, len(c))
for m, c in analyzer.global_visitor.call_sequences.items()
if c and not m.startswith('_')
]
if candidates:
candidates.sort(key=lambda x: x[1], reverse=True)
entry_method = candidates[0][0]
if not entry_method:
# List available methods
methods = list(analyzer.global_visitor.call_sequences.keys())[:10]
return f"' β οΈ No entry method specified. Available: {methods}"
result = analyzer.generate_diagram(entry_method, enrich=enrich)
logging.info(f"β Project sequence diagram generated ({len(file_contents)} files)")
return result
except Exception as e:
logging.error(f"β Project sequence diagram failed: {e}")
return f"' β Error: {str(e)}"
@mcp.tool()
def list_sequence_entry_points(code: str) -> str:
"""
Lists all available methods that can be used as sequence diagram entry points.
Use this to discover what methods exist before generating a sequence diagram.
Args:
code: Python source code to analyze
Returns:
JSON list of available entry methods with their call counts
"""
try:
from services.sequence_service import CallGraphVisitor
tree = ast.parse(code)
visitor = CallGraphVisitor()
visitor.visit(tree)
# Build list with call counts
entry_points = []
for method, calls in visitor.call_sequences.items():
if method.startswith('_'):
continue
entry_points.append({
'method': method,
'calls_count': len(calls),
'calls_to': list(set(
c['target_type'] for c in calls if c.get('target_type')
))[:5]
})
# Sort by call count (most interesting methods first)
entry_points.sort(key=lambda x: x['calls_count'], reverse=True)
logging.info(f"β Found {len(entry_points)} potential entry points")
return json.dumps({
'total_methods': len(entry_points),
'entry_points': entry_points[:20]
}, indent=2)
except SyntaxError as se:
return json.dumps({'error': f'Syntax error: {se}'})
except Exception as e:
return json.dumps({'error': str(e)})
@mcp.tool()
def list_project_entry_points(path: str = ".") -> str:
"""
Lists all available methods across the ENTIRE project for sequence diagrams.
Args:
path: Root directory to analyze
Returns:
JSON list of available entry methods with their call counts
"""
try:
from services.sequence_service import CallGraphVisitor
# Security check
is_valid, resolved_path, error_msg = _validate_path(path, operation="list")
if not is_valid:
return json.dumps({'error': error_msg})
# Analyze all files
global_visitor = CallGraphVisitor()
file_count = 0
for file_path in resolved_path.rglob("*.py"):
parts = file_path.parts
if any(p.startswith(".") or p in ["venv", "env", "__pycache__"] for p in parts):
continue
try:
code = file_path.read_text(encoding='utf-8', errors='replace')
tree = ast.parse(code)
file_visitor = CallGraphVisitor()
file_visitor.visit(tree)
# Merge
global_visitor.classes.update(file_visitor.classes)
for method, calls in file_visitor.call_sequences.items():
global_visitor.call_sequences[method].extend(calls)
file_count += 1
except Exception:
continue
# Build entry points list
entry_points = []
for method, calls in global_visitor.call_sequences.items():
if method.startswith('_') or '.visit_' in method:
continue
entry_points.append({
'method': method,
'calls_count': len(calls),
'calls_to': list(set(
c['target_type'] for c in calls if c.get('target_type')
))[:5]
})
entry_points.sort(key=lambda x: x['calls_count'], reverse=True)
logging.info(f"β Scanned {file_count} files, found {len(entry_points)} entry points")
return json.dumps({
'files_analyzed': file_count,
'total_methods': len(entry_points),
'entry_points': entry_points[:30]
}, indent=2)
except Exception as e:
return json.dumps({'error': str(e)})
# --- ENTRY POINT ---
if __name__ == "__main__":
logging.info("π MCP Server 'ArchitectAI' starting...")
logging.info(f"π Sandbox Root: {SANDBOX_ROOT}")
logging.info(f"π« Protected Paths: {len(BLOCKED_PATHS)}")
logging.info("π§ LLM Client: Singleton Pattern (created once, reused)")
logging.info("π Available Diagram Types:")
logging.info(" β’ Class Diagrams β generate_architecture_diagram()")
logging.info(" β’ Use Case Diagrams β generate_usecase_diagram()")
logging.info(" β’ Sequence Diagrams β generate_sequence_diagram()")
logging.info("Available providers: sambanova, nebius, openai")
try:
mcp.run()
except KeyboardInterrupt:
logging.info("π Server stopped manually.")
except Exception as e:
logging.critical(f"β Fatal server error: {e}")
sys.exit(1) |