Spaces:
Sleeping
Sleeping
unknown
commited on
Commit
·
7814c1f
0
Parent(s):
Initial commit: CodeFlow AI - NL to SQL Generator
Browse files- README.md +420 -0
- app.py +459 -0
- export/__init__.py +4 -0
- export/__pycache__/__init__.cpython-311.pyc +0 -0
- export/__pycache__/dbt_exporter.cpython-311.pyc +0 -0
- export/dbt_exporter.py +244 -0
- nl_parser.py +189 -0
- rag/__init__.py +4 -0
- rag/__pycache__/__init__.cpython-311.pyc +0 -0
- rag/__pycache__/template_store.cpython-311.pyc +0 -0
- rag/sample_templates/01_customer_aggregation.sql +23 -0
- rag/sample_templates/02_date_filtering.sql +23 -0
- rag/sample_templates/03_window_functions.sql +43 -0
- rag/sample_templates/04_running_totals.sql +31 -0
- rag/sample_templates/05_top_n_per_group.sql +37 -0
- rag/sample_templates/06_left_join_missing.sql +43 -0
- rag/sample_templates/07_exists_not_exists.sql +47 -0
- rag/sample_templates/08_cte_multi_step.sql +55 -0
- rag/sample_templates/09_cohort_analysis.sql +40 -0
- rag/sample_templates/10_yoy_comparison.sql +37 -0
- rag/sample_templates/11_moving_average.sql +36 -0
- rag/sample_templates/12_self_join.sql +41 -0
- rag/sample_templates/13_union_dedupe.sql +47 -0
- rag/sample_templates/14_pivoting.sql +35 -0
- rag/sample_templates/15_subquery_optimization.sql +49 -0
- rag/template_store.py +204 -0
- requirements.txt +28 -0
- sample.db +0 -0
- schema_analyzer.py +32 -0
- sql_validator.py +171 -0
- testing/__init__.py +4 -0
- testing/__pycache__/__init__.cpython-311.pyc +0 -0
- testing/__pycache__/test_runner.cpython-311.pyc +0 -0
- testing/test_runner.py +245 -0
README.md
ADDED
|
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: CodeFlow AI - Natural Language to Production ETL
|
| 3 |
+
emoji: 🚀
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 4.8.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: true
|
| 10 |
+
tags:
|
| 11 |
+
- mcp-in-action-track-enterprise
|
| 12 |
+
- etl
|
| 13 |
+
- sql
|
| 14 |
+
- llamaindex
|
| 15 |
+
- modal
|
| 16 |
+
- data-engineering
|
| 17 |
+
- natural-language-processing
|
| 18 |
+
license: mit
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
# 🚀 CodeFlow AI - Advanced Natural Language to SQL Engine
|
| 22 |
+
|
| 23 |
+
Transform plain English into production-ready, optimized SQL queries using Claude AI!
|
| 24 |
+
|
| 25 |
+
## 🏆 Hackathon Submission
|
| 26 |
+
|
| 27 |
+
**Track:** MCP in Action (Enterprise Category)
|
| 28 |
+
**Sponsors:**
|
| 29 |
+
- 🎯 **LlamaIndex** (PRIMARY) - RAG-powered template matching
|
| 30 |
+
- ⚡ **Modal** (SECONDARY) - Serverless SQL testing
|
| 31 |
+
|
| 32 |
+
**Built for:** MCP 1st Birthday Hackathon
|
| 33 |
+
|
| 34 |
+
## ✨ Features
|
| 35 |
+
|
| 36 |
+
### Core Capabilities
|
| 37 |
+
- 🧠 **Advanced NL Understanding**: Powered by Claude 3 Opus for superior natural language comprehension
|
| 38 |
+
- 🔍 **Schema-Aware Validation**: Never hallucinates tables or columns
|
| 39 |
+
- ✨ **Automatic Optimization**: Applies SQL best practices automatically
|
| 40 |
+
- 📊 **Complex Query Support**: CTEs, Window Functions, Subqueries, Analytics
|
| 41 |
+
- ⚠️ **Intelligent Warnings**: Identifies potential issues and suggests improvements
|
| 42 |
+
- 🎯 **Multi-Dialect Support**: PostgreSQL, MySQL, SQLite, SQL Server
|
| 43 |
+
|
| 44 |
+
### 🎯 Sponsor Integrations
|
| 45 |
+
|
| 46 |
+
#### LlamaIndex RAG (PRIMARY SPONSOR)
|
| 47 |
+
- **Similar Pattern Suggestions**: Retrieves relevant SQL patterns from template library
|
| 48 |
+
- **15+ ETL Templates**: Pre-built patterns for common data transformations
|
| 49 |
+
- **Context-Aware Learning**: Vector similarity search for pattern matching
|
| 50 |
+
- **Production-Ready Examples**: Customer aggregations, window functions, cohort analysis, and more
|
| 51 |
+
|
| 52 |
+
#### Modal Serverless Testing (SECONDARY SPONSOR)
|
| 53 |
+
- **Sandboxed Execution**: Test SQL queries in isolated environments
|
| 54 |
+
- **DuckDB Integration**: Fast in-memory SQL execution
|
| 55 |
+
- **Result Preview**: See query results before production deployment
|
| 56 |
+
- **Error Detection**: Catch syntax and runtime errors early
|
| 57 |
+
|
| 58 |
+
### Production Export
|
| 59 |
+
- **dbt Model Generation**: Export to production-ready dbt models
|
| 60 |
+
- **Automatic Documentation**: Schema.yml with column descriptions
|
| 61 |
+
- **Test Generation**: Basic data quality tests included
|
| 62 |
+
- **ZIP Download**: Complete dbt project structure
|
| 63 |
+
|
| 64 |
+
### Advanced SQL Features
|
| 65 |
+
- **Common Table Expressions (CTEs)**: For complex, multi-step queries
|
| 66 |
+
- **Window Functions**: Rankings, running totals, moving averages
|
| 67 |
+
- **Analytical Queries**: Cohort analysis, trends, comparisons
|
| 68 |
+
- **Optimized Joins**: Proper JOIN syntax, EXISTS/NOT EXISTS
|
| 69 |
+
- **NULL Handling**: Correct IS NULL/IS NOT NULL usage
|
| 70 |
+
- **Date Range Optimization**: Efficient date filtering
|
| 71 |
+
|
| 72 |
+
## 🎯 What Makes CodeFlow AI Unique?
|
| 73 |
+
|
| 74 |
+
Unlike generic ChatGPT prompts, CodeFlow AI provides:
|
| 75 |
+
|
| 76 |
+
1. **Schema-Aware Generation** - Never hallucinates tables or columns
|
| 77 |
+
2. **RAG-Powered Learning** (LlamaIndex) - Learns from organizational SQL patterns
|
| 78 |
+
3. **Automated Testing** (Modal) - Serverless execution with result preview
|
| 79 |
+
4. **Production Export** (dbt) - One-click export to production-ready dbt models
|
| 80 |
+
5. **Advanced Validation** - Multi-layer validation with optimization suggestions
|
| 81 |
+
6. **Template Library** - 15+ pre-built ETL patterns for common scenarios
|
| 82 |
+
|
| 83 |
+
This makes CodeFlow AI **significantly better** than just asking ChatGPT for SQL!
|
| 84 |
+
|
| 85 |
+
## 🚀 Quick Start
|
| 86 |
+
|
| 87 |
+
### Prerequisites
|
| 88 |
+
- Python 3.8+
|
| 89 |
+
- Anthropic API key
|
| 90 |
+
- OpenAI API key (for LlamaIndex embeddings)
|
| 91 |
+
- Modal account (optional, for serverless testing)
|
| 92 |
+
|
| 93 |
+
### Installation
|
| 94 |
+
|
| 95 |
+
1. Clone the repository:
|
| 96 |
+
```bash
|
| 97 |
+
git clone <repository-url>
|
| 98 |
+
cd codeflow-ai
|
| 99 |
+
```
|
| 100 |
+
|
| 101 |
+
2. Install dependencies:
|
| 102 |
+
```bash
|
| 103 |
+
pip install -r requirements.txt
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
3. Set up your API keys:
|
| 107 |
+
```bash
|
| 108 |
+
# Create .env file
|
| 109 |
+
cat > .env << EOF
|
| 110 |
+
ANTHROPIC_API_KEY=your_anthropic_key_here
|
| 111 |
+
OPENAI_API_KEY=your_openai_key_here
|
| 112 |
+
EOF
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
4. Initialize the database (optional):
|
| 116 |
+
```bash
|
| 117 |
+
python init_database.py
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
5. Run the application:
|
| 121 |
+
```bash
|
| 122 |
+
python app.py
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
6. Open your browser to: `http://127.0.0.1:7860`
|
| 126 |
+
|
| 127 |
+
## 📖 Usage Examples
|
| 128 |
+
|
| 129 |
+
### Simple Queries
|
| 130 |
+
```
|
| 131 |
+
"Show all customers"
|
| 132 |
+
→ SELECT * FROM customers;
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
### Aggregations
|
| 136 |
+
```
|
| 137 |
+
"Count orders by customer"
|
| 138 |
+
→ SELECT customer_id, COUNT(*) as order_count
|
| 139 |
+
FROM orders
|
| 140 |
+
GROUP BY customer_id;
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
### Advanced Analytics
|
| 144 |
+
```
|
| 145 |
+
"Find top 5 customers by revenue with running totals"
|
| 146 |
+
→ WITH customer_revenue AS (
|
| 147 |
+
SELECT c.id, c.name, SUM(o.amount) as total_revenue
|
| 148 |
+
FROM customers c
|
| 149 |
+
JOIN orders o ON c.id = o.customer_id
|
| 150 |
+
GROUP BY c.id, c.name
|
| 151 |
+
)
|
| 152 |
+
SELECT
|
| 153 |
+
id, name, total_revenue,
|
| 154 |
+
ROW_NUMBER() OVER (ORDER BY total_revenue DESC) as rank,
|
| 155 |
+
SUM(total_revenue) OVER (ORDER BY total_revenue DESC) as running_total
|
| 156 |
+
FROM customer_revenue
|
| 157 |
+
ORDER BY total_revenue DESC
|
| 158 |
+
LIMIT 5;
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
### Complex Conditions
|
| 162 |
+
```
|
| 163 |
+
"Customers who ordered in 2023 but not in 2024"
|
| 164 |
+
→ SELECT c.*
|
| 165 |
+
FROM customers c
|
| 166 |
+
WHERE EXISTS (
|
| 167 |
+
SELECT 1 FROM orders o
|
| 168 |
+
WHERE o.customer_id = c.id
|
| 169 |
+
AND o.order_date >= '2023-01-01'
|
| 170 |
+
AND o.order_date < '2024-01-01'
|
| 171 |
+
)
|
| 172 |
+
AND NOT EXISTS (
|
| 173 |
+
SELECT 1 FROM orders o
|
| 174 |
+
WHERE o.customer_id = c.id
|
| 175 |
+
AND o.order_date >= '2024-01-01'
|
| 176 |
+
);
|
| 177 |
+
```
|
| 178 |
+
|
| 179 |
+
## 🏗️ Architecture
|
| 180 |
+
|
| 181 |
+
### Core Components
|
| 182 |
+
|
| 183 |
+
1. **nl_parser.py**: Advanced Natural Language to SQL Engine
|
| 184 |
+
- Claude 3 Opus integration
|
| 185 |
+
- Comprehensive prompt engineering
|
| 186 |
+
- JSON-structured output with metadata
|
| 187 |
+
|
| 188 |
+
2. **schema_analyzer.py**: Database Schema Analysis
|
| 189 |
+
- Extracts table and column information
|
| 190 |
+
- Provides schema context to the AI
|
| 191 |
+
|
| 192 |
+
3. **sql_validator.py**: SQL Validation and Optimization
|
| 193 |
+
- Schema validation
|
| 194 |
+
- Anti-pattern detection
|
| 195 |
+
- Optimization suggestions
|
| 196 |
+
|
| 197 |
+
4. **app.py**: Gradio Web Interface
|
| 198 |
+
- User-friendly UI
|
| 199 |
+
- Real-time query generation
|
| 200 |
+
- Metadata and analysis display
|
| 201 |
+
|
| 202 |
+
### Sponsor Integration Modules
|
| 203 |
+
|
| 204 |
+
5. **rag/template_store.py**: LlamaIndex RAG (PRIMARY SPONSOR)
|
| 205 |
+
- Vector store with ChromaDB
|
| 206 |
+
- 15+ ETL template library
|
| 207 |
+
- Semantic similarity search
|
| 208 |
+
- Context-aware pattern matching
|
| 209 |
+
|
| 210 |
+
6. **testing/test_runner.py**: Modal Testing (SECONDARY SPONSOR)
|
| 211 |
+
- Serverless SQL execution
|
| 212 |
+
- DuckDB integration
|
| 213 |
+
- Sandboxed query testing
|
| 214 |
+
- Result preview
|
| 215 |
+
|
| 216 |
+
7. **export/dbt_exporter.py**: Production Export
|
| 217 |
+
- dbt model generation
|
| 218 |
+
- Schema documentation
|
| 219 |
+
- Test generation
|
| 220 |
+
- ZIP packaging
|
| 221 |
+
|
| 222 |
+
## 🔧 Configuration
|
| 223 |
+
|
| 224 |
+
### Environment Variables
|
| 225 |
+
|
| 226 |
+
Create a `.env` file in the project root:
|
| 227 |
+
|
| 228 |
+
```env
|
| 229 |
+
ANTHROPIC_API_KEY=your_anthropic_api_key_here
|
| 230 |
+
```
|
| 231 |
+
|
| 232 |
+
### SQL Dialect Support
|
| 233 |
+
|
| 234 |
+
The system supports multiple SQL dialects:
|
| 235 |
+
- **PostgreSQL** (default)
|
| 236 |
+
- **MySQL**
|
| 237 |
+
- **SQLite**
|
| 238 |
+
- **SQL Server**
|
| 239 |
+
|
| 240 |
+
Select your dialect in the UI dropdown.
|
| 241 |
+
|
| 242 |
+
## 📊 Query Types
|
| 243 |
+
|
| 244 |
+
The system automatically detects and optimizes different query types:
|
| 245 |
+
|
| 246 |
+
- **Simple**: Basic SELECT statements
|
| 247 |
+
- **Aggregate**: GROUP BY with aggregate functions
|
| 248 |
+
- **Join**: Multiple table queries
|
| 249 |
+
- **Window**: Analytical functions with OVER clause
|
| 250 |
+
- **CTE**: Common Table Expressions (WITH clause)
|
| 251 |
+
- **Analytical**: Complex multi-step analysis
|
| 252 |
+
|
| 253 |
+
## ✅ SQL Best Practices
|
| 254 |
+
|
| 255 |
+
The engine automatically applies these best practices:
|
| 256 |
+
|
| 257 |
+
### NULL Handling
|
| 258 |
+
❌ Bad: `WHERE column = NULL`
|
| 259 |
+
✅ Good: `WHERE column IS NULL`
|
| 260 |
+
|
| 261 |
+
### Date Ranges
|
| 262 |
+
❌ Bad: `WHERE date BETWEEN '2024-01-01' AND '2024-12-31'`
|
| 263 |
+
✅ Good: `WHERE date >= '2024-01-01' AND date < '2025-01-01'`
|
| 264 |
+
|
| 265 |
+
### Subqueries
|
| 266 |
+
❌ Bad: `WHERE id NOT IN (SELECT ...)`
|
| 267 |
+
✅ Good: `WHERE NOT EXISTS (SELECT 1 FROM ... WHERE ...)`
|
| 268 |
+
|
| 269 |
+
### Joins
|
| 270 |
+
❌ Bad: `FROM table1, table2 WHERE table1.id = table2.id`
|
| 271 |
+
✅ Good: `FROM table1 JOIN table2 ON table1.id = table2.id`
|
| 272 |
+
|
| 273 |
+
### CTEs for Readability
|
| 274 |
+
❌ Bad: Nested subqueries
|
| 275 |
+
✅ Good:
|
| 276 |
+
```sql
|
| 277 |
+
WITH step1 AS (...),
|
| 278 |
+
step2 AS (...)
|
| 279 |
+
SELECT * FROM step2;
|
| 280 |
+
```
|
| 281 |
+
|
| 282 |
+
## 🧪 Testing
|
| 283 |
+
|
| 284 |
+
Test your API connection:
|
| 285 |
+
```bash
|
| 286 |
+
python test_api.py
|
| 287 |
+
```
|
| 288 |
+
|
| 289 |
+
This will:
|
| 290 |
+
- Verify your API key
|
| 291 |
+
- Test available models
|
| 292 |
+
- Confirm connectivity
|
| 293 |
+
|
| 294 |
+
## 📝 Sample Database Schema
|
| 295 |
+
|
| 296 |
+
The default sample database includes:
|
| 297 |
+
|
| 298 |
+
### Customers Table
|
| 299 |
+
- id (INTEGER, PRIMARY KEY)
|
| 300 |
+
- name (TEXT, NOT NULL)
|
| 301 |
+
- email (TEXT)
|
| 302 |
+
- country (TEXT)
|
| 303 |
+
- created_at (TIMESTAMP)
|
| 304 |
+
|
| 305 |
+
### Orders Table
|
| 306 |
+
- id (INTEGER, PRIMARY KEY)
|
| 307 |
+
- customer_id (INTEGER)
|
| 308 |
+
- order_date (DATE)
|
| 309 |
+
- total_amount (DECIMAL)
|
| 310 |
+
- status (TEXT)
|
| 311 |
+
|
| 312 |
+
### Products Table
|
| 313 |
+
- id (INTEGER, PRIMARY KEY)
|
| 314 |
+
- name (TEXT, NOT NULL)
|
| 315 |
+
- price (DECIMAL)
|
| 316 |
+
- category (TEXT)
|
| 317 |
+
- stock_quantity (INTEGER)
|
| 318 |
+
|
| 319 |
+
## 🎓 Advanced Examples
|
| 320 |
+
|
| 321 |
+
### 1. Moving Averages
|
| 322 |
+
```
|
| 323 |
+
"Show daily order count with 7-day moving average"
|
| 324 |
+
```
|
| 325 |
+
|
| 326 |
+
### 2. Cohort Analysis
|
| 327 |
+
```
|
| 328 |
+
"Calculate customer cohorts based on first purchase month"
|
| 329 |
+
```
|
| 330 |
+
|
| 331 |
+
### 3. Year-over-Year Comparison
|
| 332 |
+
```
|
| 333 |
+
"Show monthly revenue trends with year-over-year comparison"
|
| 334 |
+
```
|
| 335 |
+
|
| 336 |
+
### 4. Top N per Group
|
| 337 |
+
```
|
| 338 |
+
"Find the 3 most popular products in each category"
|
| 339 |
+
```
|
| 340 |
+
|
| 341 |
+
### 5. Missing Data Analysis
|
| 342 |
+
```
|
| 343 |
+
"Get customers who have never placed an order"
|
| 344 |
+
```
|
| 345 |
+
|
| 346 |
+
## 🔒 Security
|
| 347 |
+
|
| 348 |
+
- Never exposes raw API keys in the UI
|
| 349 |
+
- Schema validation prevents SQL injection patterns
|
| 350 |
+
- All queries are generated, not concatenated from user input
|
| 351 |
+
|
| 352 |
+
## 🐛 Troubleshooting
|
| 353 |
+
|
| 354 |
+
### API Key Issues
|
| 355 |
+
If you see 404 model errors:
|
| 356 |
+
1. Run `python test_api.py` to check available models
|
| 357 |
+
2. Ensure your API key is valid
|
| 358 |
+
3. Check if you have access to Claude 3 models
|
| 359 |
+
|
| 360 |
+
### Schema Not Loading
|
| 361 |
+
1. Verify `sample.db` exists
|
| 362 |
+
2. Run `python init_database.py` to recreate it
|
| 363 |
+
3. Check file permissions
|
| 364 |
+
|
| 365 |
+
### Gradio Errors
|
| 366 |
+
1. Ensure Gradio >= 4.44.1: `pip install gradio>=4.44.1`
|
| 367 |
+
2. Clear browser cache
|
| 368 |
+
3. Try a different browser
|
| 369 |
+
|
| 370 |
+
## 📚 Resources
|
| 371 |
+
|
| 372 |
+
- [Anthropic Claude API Documentation](https://docs.anthropic.com/)
|
| 373 |
+
- [SQL Best Practices](https://www.sqlstyle.guide/)
|
| 374 |
+
- [Window Functions Guide](https://www.postgresql.org/docs/current/tutorial-window.html)
|
| 375 |
+
|
| 376 |
+
## 🤝 Contributing
|
| 377 |
+
|
| 378 |
+
Contributions are welcome! Please ensure:
|
| 379 |
+
- Code follows Python PEP 8 style
|
| 380 |
+
- Add tests for new features
|
| 381 |
+
- Update documentation
|
| 382 |
+
|
| 383 |
+
## 📄 License
|
| 384 |
+
|
| 385 |
+
MIT License
|
| 386 |
+
|
| 387 |
+
## 🙏 Acknowledgments
|
| 388 |
+
|
| 389 |
+
- Built with [Anthropic Claude AI](https://www.anthropic.com/)
|
| 390 |
+
- RAG powered by [LlamaIndex](https://www.llamaindex.ai/) ⭐ PRIMARY SPONSOR
|
| 391 |
+
- Serverless testing with [Modal](https://modal.com/) ⚡ SECONDARY SPONSOR
|
| 392 |
+
- UI powered by [Gradio](https://gradio.app/)
|
| 393 |
+
- Database support via [SQLAlchemy](https://www.sqlalchemy.org/)
|
| 394 |
+
|
| 395 |
+
## 🏆 Hackathon Success Criteria
|
| 396 |
+
|
| 397 |
+
✅ **Natural language → SQL**: Complete
|
| 398 |
+
✅ **LlamaIndex RAG with templates**: Complete (15 templates)
|
| 399 |
+
✅ **Modal testing integration**: Complete (with DuckDB fallback)
|
| 400 |
+
✅ **dbt export functionality**: Complete
|
| 401 |
+
✅ **README with hackathon tags**: Complete
|
| 402 |
+
✅ **Works on Hugging Face Space**: Ready to deploy
|
| 403 |
+
|
| 404 |
+
## 📹 Demo & Social
|
| 405 |
+
|
| 406 |
+
- **Demo Video**: [Coming Soon - Will be added before submission]
|
| 407 |
+
- **LinkedIn Post**: [Coming Soon - Will be shared]
|
| 408 |
+
- **Twitter/X Post**: [Coming Soon - Will be shared]
|
| 409 |
+
|
| 410 |
+
## 📞 Contact & Support
|
| 411 |
+
|
| 412 |
+
For questions about this hackathon submission:
|
| 413 |
+
- **Track**: MCP in Action (Enterprise Category)
|
| 414 |
+
- **Built for**: MCP 1st Birthday Hackathon
|
| 415 |
+
- **Sponsors**: LlamaIndex (PRIMARY), Modal (SECONDARY)
|
| 416 |
+
|
| 417 |
+
---
|
| 418 |
+
|
| 419 |
+
**🏆 MCP 1st Birthday Hackathon Submission**
|
| 420 |
+
Made with ❤️ for the data engineering community
|
app.py
ADDED
|
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
from nl_parser import NaturalLanguageParser
|
| 5 |
+
from schema_analyzer import SchemaAnalyzer
|
| 6 |
+
from sql_validator import SQLValidator
|
| 7 |
+
from rag.template_store import get_template_store
|
| 8 |
+
from testing.test_runner import get_test_runner
|
| 9 |
+
from export.dbt_exporter import get_dbt_exporter
|
| 10 |
+
|
| 11 |
+
# Load environment variables
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
# Initialize components
|
| 15 |
+
print("Initializing CodeFlow AI - Advanced NL-to-SQL Engine...")
|
| 16 |
+
try:
|
| 17 |
+
parser = NaturalLanguageParser()
|
| 18 |
+
print("✓ Natural Language Parser ready")
|
| 19 |
+
except Exception as e:
|
| 20 |
+
print(f"✗ Error initializing parser: {e}")
|
| 21 |
+
print("Make sure your ANTHROPIC_API_KEY is set in .env file!")
|
| 22 |
+
exit(1)
|
| 23 |
+
|
| 24 |
+
schema_analyzer = SchemaAnalyzer()
|
| 25 |
+
print("✓ Schema Analyzer ready")
|
| 26 |
+
|
| 27 |
+
# Get database schema
|
| 28 |
+
DB_SCHEMA = schema_analyzer.get_schema()
|
| 29 |
+
print(f"✓ Loaded schema with {len(DB_SCHEMA)} tables")
|
| 30 |
+
|
| 31 |
+
# Initialize SQL Validator
|
| 32 |
+
validator = SQLValidator(DB_SCHEMA)
|
| 33 |
+
print("✓ SQL Validator ready")
|
| 34 |
+
|
| 35 |
+
# Initialize RAG Template Store (PRIMARY SPONSOR - LlamaIndex)
|
| 36 |
+
try:
|
| 37 |
+
template_store = get_template_store()
|
| 38 |
+
print("✓ RAG Template Store ready (LlamaIndex)")
|
| 39 |
+
except Exception as e:
|
| 40 |
+
print(f"⚠️ Warning: RAG Template Store initialization failed: {e}")
|
| 41 |
+
template_store = None
|
| 42 |
+
|
| 43 |
+
# Initialize Test Runner (SECONDARY SPONSOR - Modal)
|
| 44 |
+
try:
|
| 45 |
+
test_runner = get_test_runner()
|
| 46 |
+
print("✓ SQL Test Runner ready (Modal/DuckDB)")
|
| 47 |
+
except Exception as e:
|
| 48 |
+
print(f"⚠️ Warning: Test Runner initialization failed: {e}")
|
| 49 |
+
test_runner = None
|
| 50 |
+
|
| 51 |
+
# Initialize dbt Exporter
|
| 52 |
+
try:
|
| 53 |
+
dbt_exporter = get_dbt_exporter()
|
| 54 |
+
print("✓ dbt Exporter ready")
|
| 55 |
+
except Exception as e:
|
| 56 |
+
print(f"⚠️ Warning: dbt Exporter initialization failed: {e}")
|
| 57 |
+
dbt_exporter = None
|
| 58 |
+
|
| 59 |
+
def generate_sql(description, dialect):
|
| 60 |
+
"""Main function to generate SQL with advanced analysis"""
|
| 61 |
+
|
| 62 |
+
if not description.strip():
|
| 63 |
+
return "⚠️ Please enter a description of your query.", "", ""
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
# Generate SQL using enhanced parser
|
| 67 |
+
result = parser.generate_sql(description, DB_SCHEMA, dialect)
|
| 68 |
+
|
| 69 |
+
# Extract components
|
| 70 |
+
sql = result.get("sql", "-- No SQL generated")
|
| 71 |
+
explanation = result.get("explanation", "")
|
| 72 |
+
query_type = result.get("query_type", "unknown")
|
| 73 |
+
warnings = result.get("warnings", [])
|
| 74 |
+
optimizations = result.get("optimizations", [])
|
| 75 |
+
|
| 76 |
+
# Validate SQL using sql_validator (NEW: Integration)
|
| 77 |
+
validation_result = validator.validate(sql)
|
| 78 |
+
validator_suggestions = validator.suggest_optimizations(sql)
|
| 79 |
+
|
| 80 |
+
# Find similar patterns using RAG (NEW: PRIMARY SPONSOR - LlamaIndex)
|
| 81 |
+
similar_patterns = []
|
| 82 |
+
if template_store and template_store.index is not None:
|
| 83 |
+
try:
|
| 84 |
+
similar_patterns = template_store.find_similar(description, top_k=3)
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print(f"⚠️ RAG query failed: {e}")
|
| 87 |
+
|
| 88 |
+
# Build metadata display
|
| 89 |
+
metadata_parts = []
|
| 90 |
+
|
| 91 |
+
# Query type
|
| 92 |
+
metadata_parts.append(f"**Query Type:** {query_type.title()}")
|
| 93 |
+
|
| 94 |
+
# Explanation
|
| 95 |
+
if explanation:
|
| 96 |
+
metadata_parts.append(f"\n**Explanation:**\n{explanation}")
|
| 97 |
+
|
| 98 |
+
# Optimizations applied
|
| 99 |
+
if optimizations:
|
| 100 |
+
metadata_parts.append("\n**✨ Optimizations Applied:**")
|
| 101 |
+
for opt in optimizations:
|
| 102 |
+
metadata_parts.append(f" • {opt}")
|
| 103 |
+
|
| 104 |
+
# Validator suggestions (NEW)
|
| 105 |
+
if validator_suggestions:
|
| 106 |
+
metadata_parts.append("\n**💡 Additional Optimization Suggestions:**")
|
| 107 |
+
for suggestion in validator_suggestions:
|
| 108 |
+
metadata_parts.append(f" • {suggestion}")
|
| 109 |
+
|
| 110 |
+
# Validation errors (NEW)
|
| 111 |
+
if validation_result.get("errors"):
|
| 112 |
+
metadata_parts.append("\n**❌ Validation Errors:**")
|
| 113 |
+
for error in validation_result["errors"]:
|
| 114 |
+
metadata_parts.append(f" • {error}")
|
| 115 |
+
|
| 116 |
+
# Validation warnings (NEW)
|
| 117 |
+
if validation_result.get("warnings"):
|
| 118 |
+
metadata_parts.append("\n**⚠️ Validation Warnings:**")
|
| 119 |
+
for warn in validation_result["warnings"]:
|
| 120 |
+
metadata_parts.append(f" • {warn}")
|
| 121 |
+
|
| 122 |
+
# Original warnings from parser
|
| 123 |
+
if warnings:
|
| 124 |
+
metadata_parts.append("\n**⚠️ Parser Warnings:**")
|
| 125 |
+
for warn in warnings:
|
| 126 |
+
metadata_parts.append(f" • {warn}")
|
| 127 |
+
|
| 128 |
+
# Similar patterns from RAG (NEW: PRIMARY SPONSOR)
|
| 129 |
+
if similar_patterns:
|
| 130 |
+
metadata_parts.append("\n**🔍 Similar Patterns (LlamaIndex RAG):**")
|
| 131 |
+
for i, pattern in enumerate(similar_patterns, 1):
|
| 132 |
+
template_name = pattern.get("template_name", "Unknown")
|
| 133 |
+
metadata_parts.append(f" {i}. **{template_name}**")
|
| 134 |
+
if pattern.get("excerpt"):
|
| 135 |
+
# Show first 2 lines of excerpt
|
| 136 |
+
excerpt_lines = pattern["excerpt"].split('\n')[:2]
|
| 137 |
+
for line in excerpt_lines:
|
| 138 |
+
if line.strip():
|
| 139 |
+
metadata_parts.append(f" `{line.strip()}`")
|
| 140 |
+
|
| 141 |
+
metadata_text = "\n".join(metadata_parts)
|
| 142 |
+
|
| 143 |
+
# Format SQL with header
|
| 144 |
+
formatted_sql = f"""-- CodeFlow AI - Advanced NL-to-SQL Engine
|
| 145 |
+
-- Dialect: {dialect}
|
| 146 |
+
-- Query Type: {query_type.title()}
|
| 147 |
+
|
| 148 |
+
{sql}"""
|
| 149 |
+
|
| 150 |
+
return formatted_sql, metadata_text, ""
|
| 151 |
+
|
| 152 |
+
except Exception as e:
|
| 153 |
+
error_msg = f"-- Error generating SQL\n-- {str(e)}\n\n-- Please try rephrasing your request."
|
| 154 |
+
metadata_msg = f"**❌ Error:**\n{str(e)}"
|
| 155 |
+
return error_msg, metadata_msg, ""
|
| 156 |
+
|
| 157 |
+
def test_sql_query(sql_code):
|
| 158 |
+
"""Test SQL query execution (SECONDARY SPONSOR - Modal)"""
|
| 159 |
+
|
| 160 |
+
if not sql_code or not sql_code.strip():
|
| 161 |
+
return "⚠️ No SQL to test. Generate SQL first."
|
| 162 |
+
|
| 163 |
+
# Extract just the SQL (remove comments)
|
| 164 |
+
sql_lines = []
|
| 165 |
+
for line in sql_code.split('\n'):
|
| 166 |
+
stripped = line.strip()
|
| 167 |
+
if stripped and not stripped.startswith('--'):
|
| 168 |
+
sql_lines.append(line)
|
| 169 |
+
|
| 170 |
+
clean_sql = '\n'.join(sql_lines).strip()
|
| 171 |
+
|
| 172 |
+
if not clean_sql:
|
| 173 |
+
return "⚠️ No executable SQL found."
|
| 174 |
+
|
| 175 |
+
if not test_runner:
|
| 176 |
+
return "⚠️ Test runner not available. Install Modal or DuckDB."
|
| 177 |
+
|
| 178 |
+
try:
|
| 179 |
+
# Test the SQL
|
| 180 |
+
result = test_runner.test_sql(clean_sql)
|
| 181 |
+
|
| 182 |
+
# Format results
|
| 183 |
+
if result["success"]:
|
| 184 |
+
output_parts = []
|
| 185 |
+
output_parts.append(f"**✅ Query Executed Successfully**")
|
| 186 |
+
output_parts.append(f"**Execution Method:** {result.get('execution_method', 'Unknown')}")
|
| 187 |
+
output_parts.append(f"**Rows Returned:** {result['row_count']}")
|
| 188 |
+
|
| 189 |
+
if result.get("columns"):
|
| 190 |
+
output_parts.append(f"\n**Columns:** {', '.join(result['columns'])}")
|
| 191 |
+
|
| 192 |
+
if result.get("rows"):
|
| 193 |
+
output_parts.append(f"\n**Sample Results (first 10 rows):**")
|
| 194 |
+
output_parts.append("```")
|
| 195 |
+
for i, row in enumerate(result['rows'][:10], 1):
|
| 196 |
+
output_parts.append(f"{i}. {row}")
|
| 197 |
+
output_parts.append("```")
|
| 198 |
+
|
| 199 |
+
if result['row_count'] > 10:
|
| 200 |
+
output_parts.append(f"\n_(Showing 10 of {result['row_count']} rows)_")
|
| 201 |
+
|
| 202 |
+
return "\n".join(output_parts)
|
| 203 |
+
else:
|
| 204 |
+
return f"**❌ Query Execution Failed**\n\n**Error:** {result.get('error', 'Unknown error')}"
|
| 205 |
+
|
| 206 |
+
except Exception as e:
|
| 207 |
+
return f"**❌ Test Error:**\n{str(e)}"
|
| 208 |
+
|
| 209 |
+
def export_to_dbt(sql_code, model_name, description):
|
| 210 |
+
"""Export SQL as dbt model with downloadable files"""
|
| 211 |
+
|
| 212 |
+
if not sql_code or not sql_code.strip():
|
| 213 |
+
return "⚠️ No SQL to export. Generate SQL first.", None
|
| 214 |
+
|
| 215 |
+
if not model_name or not model_name.strip():
|
| 216 |
+
return "⚠️ Please provide a model name.", None
|
| 217 |
+
|
| 218 |
+
if not dbt_exporter:
|
| 219 |
+
return "⚠️ dbt Exporter not available.", None
|
| 220 |
+
|
| 221 |
+
try:
|
| 222 |
+
# Clean model name (replace spaces with underscores, lowercase)
|
| 223 |
+
clean_model_name = model_name.strip().lower().replace(' ', '_').replace('-', '_')
|
| 224 |
+
clean_model_name = ''.join(c for c in clean_model_name if c.isalnum() or c == '_')
|
| 225 |
+
|
| 226 |
+
if not clean_model_name:
|
| 227 |
+
return "⚠️ Invalid model name. Use letters, numbers, and underscores only.", None
|
| 228 |
+
|
| 229 |
+
# Export to dbt
|
| 230 |
+
files = dbt_exporter.export_model(
|
| 231 |
+
sql=sql_code,
|
| 232 |
+
model_name=clean_model_name,
|
| 233 |
+
description=description or f"Generated model: {clean_model_name}",
|
| 234 |
+
materialization="table",
|
| 235 |
+
schema="analytics",
|
| 236 |
+
tags="codeflow_generated"
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
# Create ZIP file
|
| 240 |
+
zip_bytes = dbt_exporter.create_zip(files, clean_model_name)
|
| 241 |
+
|
| 242 |
+
# Create success message
|
| 243 |
+
message = f"""**✅ dbt Model Exported Successfully!**
|
| 244 |
+
|
| 245 |
+
**Model Name:** `{clean_model_name}`
|
| 246 |
+
**Files Generated:**
|
| 247 |
+
- `models/{clean_model_name}.sql` - dbt model
|
| 248 |
+
- `models/schema.yml` - Documentation and tests
|
| 249 |
+
- `README.md` - Usage instructions
|
| 250 |
+
|
| 251 |
+
**Next Steps:**
|
| 252 |
+
1. Download the ZIP file below
|
| 253 |
+
2. Extract to your dbt project's `models/` directory
|
| 254 |
+
3. Run: `dbt run --select {clean_model_name}`
|
| 255 |
+
4. Test: `dbt test --select {clean_model_name}`
|
| 256 |
+
|
| 257 |
+
The model is configured as a table in the `analytics` schema.
|
| 258 |
+
You can modify the configuration at the top of the model file.
|
| 259 |
+
"""
|
| 260 |
+
|
| 261 |
+
return message, zip_bytes
|
| 262 |
+
|
| 263 |
+
except Exception as e:
|
| 264 |
+
return f"**❌ Export Error:**\n{str(e)}", None
|
| 265 |
+
|
| 266 |
+
def create_app():
|
| 267 |
+
"""Create Gradio interface"""
|
| 268 |
+
|
| 269 |
+
with gr.Blocks(title="CodeFlow AI - Advanced NL-to-SQL") as app:
|
| 270 |
+
gr.Markdown("""
|
| 271 |
+
# 🚀 CodeFlow AI - Advanced Natural Language to SQL Engine
|
| 272 |
+
|
| 273 |
+
Transform plain English into **production-ready, optimized SQL** instantly!
|
| 274 |
+
|
| 275 |
+
**Advanced Features:**
|
| 276 |
+
- ✨ Automatic query optimization
|
| 277 |
+
- 🔍 Schema-aware validation
|
| 278 |
+
- 📊 Support for CTEs, window functions, and complex analytics
|
| 279 |
+
- ⚠️ Intelligent warnings and suggestions
|
| 280 |
+
- 🎯 Multiple SQL dialect support
|
| 281 |
+
- 🔍 **RAG-powered similar patterns** (LlamaIndex)
|
| 282 |
+
- 💡 **Advanced optimization suggestions**
|
| 283 |
+
""")
|
| 284 |
+
|
| 285 |
+
with gr.Row():
|
| 286 |
+
with gr.Column(scale=1):
|
| 287 |
+
gr.Markdown("### 📝 Input")
|
| 288 |
+
|
| 289 |
+
description = gr.Textbox(
|
| 290 |
+
label="Describe your data transformation",
|
| 291 |
+
placeholder="Example: Find top 5 customers by total order value with running totals",
|
| 292 |
+
lines=6
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
dialect = gr.Dropdown(
|
| 296 |
+
choices=["PostgreSQL", "MySQL", "SQLite", "SQL Server"],
|
| 297 |
+
value="PostgreSQL",
|
| 298 |
+
label="SQL Dialect"
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
with gr.Row():
|
| 302 |
+
generate_btn = gr.Button("✨ Generate SQL", variant="primary", scale=2)
|
| 303 |
+
clear_btn = gr.Button("🗑️ Clear", scale=1)
|
| 304 |
+
|
| 305 |
+
with gr.Column(scale=2):
|
| 306 |
+
gr.Markdown("### 💻 Generated SQL")
|
| 307 |
+
|
| 308 |
+
output = gr.Code(
|
| 309 |
+
label="SQL Output",
|
| 310 |
+
language="sql",
|
| 311 |
+
lines=15
|
| 312 |
+
)
|
| 313 |
+
|
| 314 |
+
# Test Query button (SECONDARY SPONSOR - Modal)
|
| 315 |
+
with gr.Row():
|
| 316 |
+
test_btn = gr.Button("🧪 Test Query (Modal)", variant="secondary")
|
| 317 |
+
|
| 318 |
+
gr.Markdown("### 📊 Query Analysis")
|
| 319 |
+
|
| 320 |
+
metadata = gr.Markdown(
|
| 321 |
+
value="",
|
| 322 |
+
label="Analysis"
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
+
# Test results section
|
| 326 |
+
with gr.Accordion("🧪 Test Results", open=False):
|
| 327 |
+
test_results = gr.Markdown(
|
| 328 |
+
value="Click 'Test Query' to execute the SQL and see results.",
|
| 329 |
+
label="Test Output"
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# dbt Export section
|
| 333 |
+
gr.Markdown("### 📦 Export to dbt")
|
| 334 |
+
with gr.Row():
|
| 335 |
+
with gr.Column(scale=2):
|
| 336 |
+
model_name_input = gr.Textbox(
|
| 337 |
+
label="Model Name",
|
| 338 |
+
placeholder="customer_analytics",
|
| 339 |
+
value="my_model"
|
| 340 |
+
)
|
| 341 |
+
with gr.Column(scale=3):
|
| 342 |
+
model_desc_input = gr.Textbox(
|
| 343 |
+
label="Model Description",
|
| 344 |
+
placeholder="Describe what this model does...",
|
| 345 |
+
value=""
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
export_btn = gr.Button("📦 Export to dbt", variant="secondary")
|
| 349 |
+
|
| 350 |
+
with gr.Accordion("📦 Export Status", open=False):
|
| 351 |
+
export_status = gr.Markdown(
|
| 352 |
+
value="Configure model details above and click 'Export to dbt' to generate production-ready dbt files.",
|
| 353 |
+
label="Export Output"
|
| 354 |
+
)
|
| 355 |
+
download_file = gr.File(label="Download dbt Model", visible=False)
|
| 356 |
+
|
| 357 |
+
# Example queries
|
| 358 |
+
gr.Markdown("### 💡 Try These Advanced Examples")
|
| 359 |
+
gr.Examples(
|
| 360 |
+
examples=[
|
| 361 |
+
["Find top 10 customers by total order value with their rank"],
|
| 362 |
+
["Show monthly revenue trends with year-over-year comparison"],
|
| 363 |
+
["Get customers who have never placed an order"],
|
| 364 |
+
["Calculate running total of sales by date for each product"],
|
| 365 |
+
["Find the 3 most popular products in each category"],
|
| 366 |
+
["Show customers with above-average order values"],
|
| 367 |
+
["List orders with customer details, handling missing customers gracefully"],
|
| 368 |
+
["Calculate customer cohorts based on first purchase month"],
|
| 369 |
+
["Find products that were ordered in 2023 but not in 2024"],
|
| 370 |
+
["Show daily order count with 7-day moving average"]
|
| 371 |
+
],
|
| 372 |
+
inputs=[description]
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
# Event handlers
|
| 376 |
+
generate_btn.click(
|
| 377 |
+
fn=generate_sql,
|
| 378 |
+
inputs=[description, dialect],
|
| 379 |
+
outputs=[output, metadata, gr.Textbox(visible=False)]
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
test_btn.click(
|
| 383 |
+
fn=test_sql_query,
|
| 384 |
+
inputs=[output],
|
| 385 |
+
outputs=[test_results]
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
def handle_export(sql_code, model_name, description):
|
| 389 |
+
"""Handle dbt export and show/hide download button"""
|
| 390 |
+
message, zip_bytes = export_to_dbt(sql_code, model_name, description)
|
| 391 |
+
if zip_bytes:
|
| 392 |
+
# Save to temp file for download
|
| 393 |
+
import tempfile
|
| 394 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.zip', mode='wb') as f:
|
| 395 |
+
f.write(zip_bytes)
|
| 396 |
+
temp_path = f.name
|
| 397 |
+
return message, gr.File(value=temp_path, visible=True)
|
| 398 |
+
else:
|
| 399 |
+
return message, gr.File(visible=False)
|
| 400 |
+
|
| 401 |
+
export_btn.click(
|
| 402 |
+
fn=handle_export,
|
| 403 |
+
inputs=[output, model_name_input, model_desc_input],
|
| 404 |
+
outputs=[export_status, download_file]
|
| 405 |
+
)
|
| 406 |
+
|
| 407 |
+
clear_btn.click(
|
| 408 |
+
fn=lambda: ("", "", "", "Click 'Test Query' to execute the SQL and see results.",
|
| 409 |
+
"Configure model details above and click 'Export to dbt' to generate production-ready dbt files.",
|
| 410 |
+
gr.File(visible=False)),
|
| 411 |
+
outputs=[description, output, metadata, test_results, export_status, download_file]
|
| 412 |
+
)
|
| 413 |
+
|
| 414 |
+
# Schema display
|
| 415 |
+
with gr.Accordion("📋 Database Schema", open=False):
|
| 416 |
+
schema_md = "## Available Tables and Columns\n\n"
|
| 417 |
+
for table, columns in DB_SCHEMA.items():
|
| 418 |
+
schema_md += f"### 📊 {table}\n\n"
|
| 419 |
+
schema_md += "| Column | Type | Constraints |\n"
|
| 420 |
+
schema_md += "|--------|------|-------------|\n"
|
| 421 |
+
for col in columns:
|
| 422 |
+
constraints = []
|
| 423 |
+
if col.get('primary_key'):
|
| 424 |
+
constraints.append("PRIMARY KEY")
|
| 425 |
+
if not col.get('nullable', True):
|
| 426 |
+
constraints.append("NOT NULL")
|
| 427 |
+
constraint_str = ", ".join(constraints) if constraints else "-"
|
| 428 |
+
schema_md += f"| {col['name']} | {col['type']} | {constraint_str} |\n"
|
| 429 |
+
schema_md += "\n"
|
| 430 |
+
|
| 431 |
+
gr.Markdown(schema_md)
|
| 432 |
+
|
| 433 |
+
gr.Markdown("---")
|
| 434 |
+
gr.Markdown("""
|
| 435 |
+
**🏆 CodeFlow AI - Advanced NL-to-SQL Engine**
|
| 436 |
+
|
| 437 |
+
**Core Features:**
|
| 438 |
+
- 🧠 Powered by Claude 3 Opus (Anthropic)
|
| 439 |
+
- 🔍 **LlamaIndex RAG** - Similar pattern suggestions from template library
|
| 440 |
+
- ✨ Automatic query optimization with validation
|
| 441 |
+
- 📊 Complex query support (CTEs, Window Functions, Subqueries)
|
| 442 |
+
- ⚠️ Intelligent error handling and warnings
|
| 443 |
+
|
| 444 |
+
**Sponsor Integrations:**
|
| 445 |
+
- 🎯 **LlamaIndex** - RAG-powered template matching (PRIMARY SPONSOR)
|
| 446 |
+
- ⚡ **Modal** - Serverless SQL testing (coming soon)
|
| 447 |
+
|
| 448 |
+
Built for: MCP 1st Birthday Hackathon
|
| 449 |
+
""")
|
| 450 |
+
|
| 451 |
+
return app
|
| 452 |
+
|
| 453 |
+
if __name__ == "__main__":
|
| 454 |
+
print("\n" + "="*50)
|
| 455 |
+
print("Starting CodeFlow AI - Advanced NL-to-SQL Engine...")
|
| 456 |
+
print("="*50 + "\n")
|
| 457 |
+
|
| 458 |
+
app = create_app()
|
| 459 |
+
app.launch(share=False)
|
export/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Export module for CodeFlow AI
|
| 3 |
+
Provides dbt model generation and other export formats
|
| 4 |
+
"""
|
export/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (278 Bytes). View file
|
|
|
export/__pycache__/dbt_exporter.cpython-311.pyc
ADDED
|
Binary file (8.87 kB). View file
|
|
|
export/dbt_exporter.py
ADDED
|
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
dbt Exporter for CodeFlow AI
|
| 3 |
+
Generates production-ready dbt models from SQL queries
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import io
|
| 7 |
+
import zipfile
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
from typing import Dict, Optional
|
| 10 |
+
from jinja2 import Template
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class DBTExporter:
|
| 14 |
+
"""
|
| 15 |
+
Export SQL queries as dbt models
|
| 16 |
+
Generates model.sql and schema.yml files
|
| 17 |
+
"""
|
| 18 |
+
|
| 19 |
+
def __init__(self):
|
| 20 |
+
# Use {0}, {1} placeholders instead of Jinja {{ }} to avoid conflict with dbt
|
| 21 |
+
self.model_template = """{{{{
|
| 22 |
+
config(
|
| 23 |
+
materialized='{materialization}',
|
| 24 |
+
schema='{schema}',
|
| 25 |
+
tags=['{tags}']
|
| 26 |
+
)
|
| 27 |
+
}}}}
|
| 28 |
+
|
| 29 |
+
/*
|
| 30 |
+
Model: {model_name}
|
| 31 |
+
Description: {description}
|
| 32 |
+
Generated: {generated_date}
|
| 33 |
+
Generated by: CodeFlow AI
|
| 34 |
+
*/
|
| 35 |
+
|
| 36 |
+
{sql_query}
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
self.schema_template = """version: 2
|
| 40 |
+
|
| 41 |
+
models:
|
| 42 |
+
- name: {{ model_name }}
|
| 43 |
+
description: {{ description }}
|
| 44 |
+
columns:
|
| 45 |
+
{% for column in columns %}
|
| 46 |
+
- name: {{ column.name }}
|
| 47 |
+
description: {{ column.description }}
|
| 48 |
+
{% if column.tests %}
|
| 49 |
+
tests:
|
| 50 |
+
{% for test in column.tests %}
|
| 51 |
+
- {{ test }}
|
| 52 |
+
{% endfor %}
|
| 53 |
+
{% endif %}
|
| 54 |
+
{% endfor %}
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
+
def export_model(
|
| 58 |
+
self,
|
| 59 |
+
sql: str,
|
| 60 |
+
model_name: str,
|
| 61 |
+
description: str = "",
|
| 62 |
+
materialization: str = "table",
|
| 63 |
+
schema: str = "analytics",
|
| 64 |
+
tags: str = "codeflow_generated",
|
| 65 |
+
columns: Optional[list] = None
|
| 66 |
+
) -> Dict[str, str]:
|
| 67 |
+
"""
|
| 68 |
+
Export SQL as dbt model
|
| 69 |
+
|
| 70 |
+
Args:
|
| 71 |
+
sql: SQL query to export
|
| 72 |
+
model_name: Name for the dbt model
|
| 73 |
+
description: Model description
|
| 74 |
+
materialization: dbt materialization (table, view, incremental)
|
| 75 |
+
schema: Target schema name
|
| 76 |
+
tags: Model tags
|
| 77 |
+
columns: List of column definitions
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
Dict with model.sql and schema.yml content
|
| 81 |
+
"""
|
| 82 |
+
|
| 83 |
+
# Clean SQL (remove CodeFlow comments)
|
| 84 |
+
clean_sql = self._clean_sql(sql)
|
| 85 |
+
|
| 86 |
+
# Generate model.sql using format() instead of Jinja2 to avoid dbt {{ }} conflict
|
| 87 |
+
model_content = self.model_template.format(
|
| 88 |
+
materialization=materialization,
|
| 89 |
+
schema=schema,
|
| 90 |
+
tags=tags,
|
| 91 |
+
model_name=model_name,
|
| 92 |
+
description=description or f"Generated model: {model_name}",
|
| 93 |
+
generated_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
| 94 |
+
sql_query=clean_sql
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Generate schema.yml
|
| 98 |
+
if not columns:
|
| 99 |
+
# Auto-detect columns from SQL (basic)
|
| 100 |
+
columns = self._detect_columns(clean_sql)
|
| 101 |
+
|
| 102 |
+
schema_template = Template(self.schema_template)
|
| 103 |
+
schema_content = schema_template.render(
|
| 104 |
+
model_name=model_name,
|
| 105 |
+
description=description or f"Generated model: {model_name}",
|
| 106 |
+
columns=columns
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
return {
|
| 110 |
+
"model.sql": model_content,
|
| 111 |
+
"schema.yml": schema_content
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
def _clean_sql(self, sql: str) -> str:
|
| 115 |
+
"""Remove CodeFlow-specific comments from SQL"""
|
| 116 |
+
lines = []
|
| 117 |
+
for line in sql.split('\n'):
|
| 118 |
+
stripped = line.strip()
|
| 119 |
+
# Skip CodeFlow header comments
|
| 120 |
+
if stripped.startswith('-- CodeFlow'):
|
| 121 |
+
continue
|
| 122 |
+
if stripped.startswith('-- Dialect:'):
|
| 123 |
+
continue
|
| 124 |
+
if stripped.startswith('-- Query Type:'):
|
| 125 |
+
continue
|
| 126 |
+
lines.append(line)
|
| 127 |
+
|
| 128 |
+
return '\n'.join(lines).strip()
|
| 129 |
+
|
| 130 |
+
def _detect_columns(self, sql: str) -> list:
|
| 131 |
+
"""
|
| 132 |
+
Basic column detection from SQL
|
| 133 |
+
Looks for SELECT clause columns
|
| 134 |
+
"""
|
| 135 |
+
columns = []
|
| 136 |
+
|
| 137 |
+
# Find SELECT clause (very basic parser)
|
| 138 |
+
sql_upper = sql.upper()
|
| 139 |
+
if 'SELECT' not in sql_upper:
|
| 140 |
+
return columns
|
| 141 |
+
|
| 142 |
+
# Extract between SELECT and FROM
|
| 143 |
+
select_idx = sql_upper.find('SELECT')
|
| 144 |
+
from_idx = sql_upper.find('FROM', select_idx)
|
| 145 |
+
|
| 146 |
+
if from_idx == -1:
|
| 147 |
+
from_idx = len(sql)
|
| 148 |
+
|
| 149 |
+
select_clause = sql[select_idx + 6:from_idx].strip()
|
| 150 |
+
|
| 151 |
+
# Split by comma (basic - doesn't handle nested commas)
|
| 152 |
+
parts = select_clause.split(',')
|
| 153 |
+
|
| 154 |
+
for part in parts[:10]: # Limit to first 10 columns
|
| 155 |
+
part = part.strip()
|
| 156 |
+
if not part:
|
| 157 |
+
continue
|
| 158 |
+
|
| 159 |
+
# Extract column name (after AS if present)
|
| 160 |
+
if ' AS ' in part.upper():
|
| 161 |
+
col_name = part.upper().split(' AS ')[-1].strip()
|
| 162 |
+
elif ' ' in part:
|
| 163 |
+
# Take last word
|
| 164 |
+
col_name = part.split()[-1].strip()
|
| 165 |
+
else:
|
| 166 |
+
col_name = part
|
| 167 |
+
|
| 168 |
+
# Clean column name
|
| 169 |
+
col_name = col_name.replace('`', '').replace('"', '').replace("'", "")
|
| 170 |
+
|
| 171 |
+
if col_name and col_name != '*':
|
| 172 |
+
columns.append({
|
| 173 |
+
"name": col_name.lower(),
|
| 174 |
+
"description": f"Column: {col_name}",
|
| 175 |
+
"tests": ["not_null"] if "id" in col_name.lower() else []
|
| 176 |
+
})
|
| 177 |
+
|
| 178 |
+
return columns
|
| 179 |
+
|
| 180 |
+
def create_zip(self, files: Dict[str, str], model_name: str) -> bytes:
|
| 181 |
+
"""
|
| 182 |
+
Create a ZIP file containing the dbt files
|
| 183 |
+
|
| 184 |
+
Args:
|
| 185 |
+
files: Dict of filename -> content
|
| 186 |
+
model_name: Model name for directory structure
|
| 187 |
+
|
| 188 |
+
Returns:
|
| 189 |
+
ZIP file as bytes
|
| 190 |
+
"""
|
| 191 |
+
zip_buffer = io.BytesIO()
|
| 192 |
+
|
| 193 |
+
with zipfile.ZipFile(zip_buffer, 'w', zipfile.ZIP_DEFLATED) as zip_file:
|
| 194 |
+
# Create models directory structure
|
| 195 |
+
for filename, content in files.items():
|
| 196 |
+
if filename.endswith('.sql'):
|
| 197 |
+
path = f"models/{model_name}.sql"
|
| 198 |
+
elif filename.endswith('.yml'):
|
| 199 |
+
path = f"models/schema.yml"
|
| 200 |
+
else:
|
| 201 |
+
path = f"models/{filename}"
|
| 202 |
+
|
| 203 |
+
zip_file.writestr(path, content)
|
| 204 |
+
|
| 205 |
+
# Add README
|
| 206 |
+
readme = f"""# dbt Model: {model_name}
|
| 207 |
+
|
| 208 |
+
Generated by CodeFlow AI on {datetime.now().strftime("%Y-%m-%d")}
|
| 209 |
+
|
| 210 |
+
## Files Included
|
| 211 |
+
|
| 212 |
+
- `models/{model_name}.sql` - The dbt model
|
| 213 |
+
- `models/schema.yml` - Model and column documentation
|
| 214 |
+
|
| 215 |
+
## Usage
|
| 216 |
+
|
| 217 |
+
1. Copy these files to your dbt project's `models/` directory
|
| 218 |
+
2. Run `dbt run --select {model_name}` to execute
|
| 219 |
+
3. Run `dbt test --select {model_name}` to run tests
|
| 220 |
+
|
| 221 |
+
## Configuration
|
| 222 |
+
|
| 223 |
+
You can modify the model configuration at the top of {model_name}.sql:
|
| 224 |
+
- materialization: table, view, or incremental
|
| 225 |
+
- schema: target schema name
|
| 226 |
+
- tags: for organizing models
|
| 227 |
+
|
| 228 |
+
For more information, visit: https://docs.getdbt.com/
|
| 229 |
+
"""
|
| 230 |
+
zip_file.writestr("README.md", readme)
|
| 231 |
+
|
| 232 |
+
zip_buffer.seek(0)
|
| 233 |
+
return zip_buffer.getvalue()
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
# Singleton instance
|
| 237 |
+
_dbt_exporter = None
|
| 238 |
+
|
| 239 |
+
def get_dbt_exporter() -> DBTExporter:
|
| 240 |
+
"""Get or create the global dbt exporter instance"""
|
| 241 |
+
global _dbt_exporter
|
| 242 |
+
if _dbt_exporter is None:
|
| 243 |
+
_dbt_exporter = DBTExporter()
|
| 244 |
+
return _dbt_exporter
|
nl_parser.py
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import anthropic
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
import re
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
|
| 7 |
+
load_dotenv()
|
| 8 |
+
|
| 9 |
+
class NaturalLanguageParser:
|
| 10 |
+
"""Advanced Natural Language to SQL Engine using Claude"""
|
| 11 |
+
|
| 12 |
+
def __init__(self):
|
| 13 |
+
api_key = os.getenv("ANTHROPIC_API_KEY")
|
| 14 |
+
if not api_key:
|
| 15 |
+
raise ValueError("ANTHROPIC_API_KEY not found in .env file!")
|
| 16 |
+
self.client = anthropic.Anthropic(api_key=api_key)
|
| 17 |
+
|
| 18 |
+
def generate_sql(self, description, schema, dialect="PostgreSQL"):
|
| 19 |
+
"""
|
| 20 |
+
Generate complete, optimized SQL directly from natural language.
|
| 21 |
+
This is the main engine that handles all SQL generation logic.
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
schema_text = self._format_schema(schema)
|
| 25 |
+
|
| 26 |
+
prompt = f"""You are an advanced Natural-Language-to-SQL Engine.
|
| 27 |
+
Your job is to convert user instructions into correct, executable, efficient SQL queries, based solely on the provided database schema.
|
| 28 |
+
|
| 29 |
+
🔥 Core Responsibilities
|
| 30 |
+
|
| 31 |
+
1. NEVER hallucinate tables or columns. Only use what exists in the provided schema.
|
| 32 |
+
2. Follow the SQL dialect: {dialect}
|
| 33 |
+
3. Validate user intent and generate the best query, even if their natural language is unclear.
|
| 34 |
+
4. Fix common SQL mistakes:
|
| 35 |
+
- Use IS NULL / IS NOT NULL (never = NULL)
|
| 36 |
+
- Use >= and < for date ranges instead of BETWEEN
|
| 37 |
+
- Proper JOIN syntax
|
| 38 |
+
- Correct aggregate/grouping logic
|
| 39 |
+
5. Optimize the SQL:
|
| 40 |
+
- Use proper filters
|
| 41 |
+
- Use EXISTS/NOT EXISTS for subqueries
|
| 42 |
+
- Use CTEs for clarity in complex queries
|
| 43 |
+
- Avoid unnecessary computation
|
| 44 |
+
6. For complex analysis (cohorts, trends, rankings, window functions):
|
| 45 |
+
- Use Common Table Expressions (CTEs)
|
| 46 |
+
- Use window functions when appropriate
|
| 47 |
+
|
| 48 |
+
🗃️ Available Database Schema:
|
| 49 |
+
{schema_text}
|
| 50 |
+
|
| 51 |
+
👤 User Request: {description}
|
| 52 |
+
|
| 53 |
+
🎯 SQL Construction Rules:
|
| 54 |
+
|
| 55 |
+
WHERE clauses:
|
| 56 |
+
- Use IS NULL / IS NOT NULL, not = 'NULL'
|
| 57 |
+
- For date ranges use >= and < instead of BETWEEN
|
| 58 |
+
|
| 59 |
+
Aggregations:
|
| 60 |
+
- GROUP BY all non-aggregated fields
|
| 61 |
+
- Avoid GROUP BY unnecessary columns
|
| 62 |
+
|
| 63 |
+
Joins:
|
| 64 |
+
- Prefer explicit JOIN syntax
|
| 65 |
+
- Use LEFT JOIN for "missing data" queries
|
| 66 |
+
- Always specify join conditions clearly
|
| 67 |
+
|
| 68 |
+
Subqueries:
|
| 69 |
+
- Prefer EXISTS/NOT EXISTS for performance
|
| 70 |
+
- Use CTEs for readability in complex queries
|
| 71 |
+
|
| 72 |
+
Window Functions (use when user asks for):
|
| 73 |
+
- Top N per group
|
| 74 |
+
- Rankings
|
| 75 |
+
- Running totals
|
| 76 |
+
- Comparisons to averages
|
| 77 |
+
- Rolling windows
|
| 78 |
+
|
| 79 |
+
📋 Output Format:
|
| 80 |
+
|
| 81 |
+
Return a JSON object with this exact structure:
|
| 82 |
+
{{
|
| 83 |
+
"sql": "the complete SQL query here",
|
| 84 |
+
"explanation": "brief explanation of what the query does",
|
| 85 |
+
"query_type": "simple|aggregate|join|window|cte|analytical",
|
| 86 |
+
"warnings": ["any warnings about schema limitations or assumptions"],
|
| 87 |
+
"optimizations": ["list of optimizations applied"]
|
| 88 |
+
}}
|
| 89 |
+
|
| 90 |
+
CRITICAL RULES FOR JSON OUTPUT:
|
| 91 |
+
- Return ONLY valid JSON (no markdown, no code blocks, no extra text)
|
| 92 |
+
- Escape ALL special characters in the SQL string:
|
| 93 |
+
* Newlines must be \\n
|
| 94 |
+
* Quotes must be \\"
|
| 95 |
+
* Backslashes must be \\\\
|
| 96 |
+
- The "sql" field must be a single-line string with \\n for line breaks
|
| 97 |
+
- Always end SQL with semicolon
|
| 98 |
+
- If the request is impossible with the given schema, set "sql" to "-- ERROR: <explanation>" and explain in "warnings"
|
| 99 |
+
|
| 100 |
+
Generate the SQL query now:"""
|
| 101 |
+
|
| 102 |
+
try:
|
| 103 |
+
response = self.client.messages.create(
|
| 104 |
+
model="claude-3-opus-20240229",
|
| 105 |
+
max_tokens=4000,
|
| 106 |
+
messages=[{"role": "user", "content": prompt}]
|
| 107 |
+
)
|
| 108 |
+
|
| 109 |
+
content = response.content[0].text.strip()
|
| 110 |
+
|
| 111 |
+
# Remove markdown code blocks if present
|
| 112 |
+
content = content.replace("```json", "").replace("```", "").strip()
|
| 113 |
+
|
| 114 |
+
# Try to parse JSON
|
| 115 |
+
try:
|
| 116 |
+
result = json.loads(content)
|
| 117 |
+
|
| 118 |
+
# Ensure all required fields exist
|
| 119 |
+
if "sql" not in result or not result["sql"]:
|
| 120 |
+
result["sql"] = "-- ERROR: No SQL generated"
|
| 121 |
+
if "explanation" not in result:
|
| 122 |
+
result["explanation"] = "SQL query generated"
|
| 123 |
+
if "query_type" not in result:
|
| 124 |
+
result["query_type"] = "select"
|
| 125 |
+
if "warnings" not in result:
|
| 126 |
+
result["warnings"] = []
|
| 127 |
+
if "optimizations" not in result:
|
| 128 |
+
result["optimizations"] = []
|
| 129 |
+
|
| 130 |
+
return result
|
| 131 |
+
|
| 132 |
+
except json.JSONDecodeError as e:
|
| 133 |
+
# If JSON parsing fails, try to extract components manually using regex
|
| 134 |
+
print(f"JSON parsing failed: {e}, attempting manual extraction...")
|
| 135 |
+
|
| 136 |
+
# Try to extract SQL between "sql": " and next quote
|
| 137 |
+
sql_match = re.search(r'"sql"\s*:\s*"((?:[^"\\]|\\.|\\n)*)"', content, re.DOTALL)
|
| 138 |
+
if sql_match:
|
| 139 |
+
sql = sql_match.group(1)
|
| 140 |
+
# Unescape the JSON string
|
| 141 |
+
sql = sql.replace('\\n', '\n').replace('\\"', '"').replace('\\\\', '\\')
|
| 142 |
+
else:
|
| 143 |
+
# Try alternative format or use entire content
|
| 144 |
+
sql = content
|
| 145 |
+
|
| 146 |
+
# Try to extract explanation
|
| 147 |
+
expl_match = re.search(r'"explanation"\s*:\s*"((?:[^"\\]|\\.)*)"', content, re.DOTALL)
|
| 148 |
+
explanation = expl_match.group(1) if expl_match else "SQL generated (with parsing issues)"
|
| 149 |
+
|
| 150 |
+
# Try to extract query type
|
| 151 |
+
type_match = re.search(r'"query_type"\s*:\s*"([^"]*)"', content)
|
| 152 |
+
query_type = type_match.group(1) if type_match else "select"
|
| 153 |
+
|
| 154 |
+
result = {
|
| 155 |
+
"sql": sql,
|
| 156 |
+
"explanation": explanation,
|
| 157 |
+
"query_type": query_type,
|
| 158 |
+
"warnings": ["JSON parsing issue - SQL may need review"],
|
| 159 |
+
"optimizations": []
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
return result
|
| 163 |
+
|
| 164 |
+
except Exception as e:
|
| 165 |
+
return {
|
| 166 |
+
"sql": f"-- ERROR: {str(e)}",
|
| 167 |
+
"explanation": "An error occurred during SQL generation",
|
| 168 |
+
"query_type": "error",
|
| 169 |
+
"warnings": [str(e)],
|
| 170 |
+
"optimizations": []
|
| 171 |
+
}
|
| 172 |
+
|
| 173 |
+
def _format_schema(self, schema):
|
| 174 |
+
"""Format schema for prompt"""
|
| 175 |
+
lines = ["Tables and Columns:"]
|
| 176 |
+
for table, columns in schema.items():
|
| 177 |
+
lines.append(f"\n📊 {table}")
|
| 178 |
+
for col in columns:
|
| 179 |
+
nullable = "NULL" if col.get('nullable', True) else "NOT NULL"
|
| 180 |
+
pk = " (PRIMARY KEY)" if col.get('primary_key', False) else ""
|
| 181 |
+
lines.append(f" - {col['name']}: {col['type']} {nullable}{pk}")
|
| 182 |
+
return "\n".join(lines)
|
| 183 |
+
|
| 184 |
+
# Legacy method for backward compatibility
|
| 185 |
+
def parse(self, description, schema):
|
| 186 |
+
"""Legacy method - redirects to generate_sql"""
|
| 187 |
+
result = self.generate_sql(description, schema)
|
| 188 |
+
# Return just the SQL for backward compatibility
|
| 189 |
+
return {"raw_sql": result.get("sql", ""), "metadata": result}
|
rag/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
RAG (Retrieval-Augmented Generation) module for CodeFlow AI
|
| 3 |
+
Uses LlamaIndex to provide similar ETL pattern suggestions
|
| 4 |
+
"""
|
rag/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (309 Bytes). View file
|
|
|
rag/__pycache__/template_store.cpython-311.pyc
ADDED
|
Binary file (10.2 kB). View file
|
|
|
rag/sample_templates/01_customer_aggregation.sql
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Customer Order Aggregation
|
| 2 |
+
-- Pattern: Aggregate metrics by customer dimension
|
| 3 |
+
-- Use Case: Calculate total order value, count, average per customer
|
| 4 |
+
|
| 5 |
+
SELECT
|
| 6 |
+
c.customer_id,
|
| 7 |
+
c.name,
|
| 8 |
+
c.email,
|
| 9 |
+
COUNT(o.order_id) as total_orders,
|
| 10 |
+
SUM(o.total_amount) as total_spent,
|
| 11 |
+
AVG(o.total_amount) as avg_order_value,
|
| 12 |
+
MIN(o.order_date) as first_order_date,
|
| 13 |
+
MAX(o.order_date) as last_order_date
|
| 14 |
+
FROM customers c
|
| 15 |
+
LEFT JOIN orders o ON c.customer_id = o.customer_id
|
| 16 |
+
GROUP BY c.customer_id, c.name, c.email
|
| 17 |
+
ORDER BY total_spent DESC;
|
| 18 |
+
|
| 19 |
+
-- Key Concepts:
|
| 20 |
+
-- - LEFT JOIN to include customers with no orders
|
| 21 |
+
-- - Multiple aggregations (COUNT, SUM, AVG, MIN, MAX)
|
| 22 |
+
-- - GROUP BY all non-aggregated columns
|
| 23 |
+
-- - ORDER BY to rank results
|
rag/sample_templates/02_date_filtering.sql
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Date Range Filtering
|
| 2 |
+
-- Pattern: Filter records within specific date ranges
|
| 3 |
+
-- Use Case: Get orders for specific time periods
|
| 4 |
+
|
| 5 |
+
SELECT
|
| 6 |
+
order_id,
|
| 7 |
+
customer_id,
|
| 8 |
+
order_date,
|
| 9 |
+
total_amount,
|
| 10 |
+
status
|
| 11 |
+
FROM orders
|
| 12 |
+
WHERE order_date >= '2024-01-01'
|
| 13 |
+
AND order_date < '2024-04-01' -- Use < instead of <= for exclusive end
|
| 14 |
+
ORDER BY order_date DESC;
|
| 15 |
+
|
| 16 |
+
-- Key Concepts:
|
| 17 |
+
-- - Use >= and < for date ranges (more precise than BETWEEN)
|
| 18 |
+
-- - BETWEEN is inclusive on both ends, which can cause issues
|
| 19 |
+
-- - Always use ISO format YYYY-MM-DD for dates
|
| 20 |
+
-- - Consider timezone implications in production
|
| 21 |
+
|
| 22 |
+
-- Alternative with BETWEEN (less preferred):
|
| 23 |
+
-- WHERE order_date BETWEEN '2024-01-01' AND '2024-03-31'
|
rag/sample_templates/03_window_functions.sql
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Window Functions for Ranking
|
| 2 |
+
-- Pattern: Rank records within partitions
|
| 3 |
+
-- Use Case: Top N per category, rankings, row numbers
|
| 4 |
+
|
| 5 |
+
-- Example 1: Rank customers by total orders in each city
|
| 6 |
+
SELECT
|
| 7 |
+
customer_id,
|
| 8 |
+
name,
|
| 9 |
+
city,
|
| 10 |
+
total_orders,
|
| 11 |
+
ROW_NUMBER() OVER (PARTITION BY city ORDER BY total_orders DESC) as row_num,
|
| 12 |
+
RANK() OVER (PARTITION BY city ORDER BY total_orders DESC) as rank,
|
| 13 |
+
DENSE_RANK() OVER (PARTITION BY city ORDER BY total_orders DESC) as dense_rank
|
| 14 |
+
FROM (
|
| 15 |
+
SELECT
|
| 16 |
+
c.customer_id,
|
| 17 |
+
c.name,
|
| 18 |
+
c.city,
|
| 19 |
+
COUNT(o.order_id) as total_orders
|
| 20 |
+
FROM customers c
|
| 21 |
+
LEFT JOIN orders o ON c.customer_id = o.customer_id
|
| 22 |
+
GROUP BY c.customer_id, c.name, c.city
|
| 23 |
+
) customer_metrics;
|
| 24 |
+
|
| 25 |
+
-- Example 2: Top 3 customers per city
|
| 26 |
+
SELECT *
|
| 27 |
+
FROM (
|
| 28 |
+
SELECT
|
| 29 |
+
customer_id,
|
| 30 |
+
name,
|
| 31 |
+
city,
|
| 32 |
+
total_orders,
|
| 33 |
+
ROW_NUMBER() OVER (PARTITION BY city ORDER BY total_orders DESC) as rn
|
| 34 |
+
FROM customer_metrics
|
| 35 |
+
) ranked
|
| 36 |
+
WHERE rn <= 3;
|
| 37 |
+
|
| 38 |
+
-- Key Concepts:
|
| 39 |
+
-- - ROW_NUMBER(): Unique sequential number (1,2,3,4...)
|
| 40 |
+
-- - RANK(): Same rank for ties, skips next rank (1,2,2,4...)
|
| 41 |
+
-- - DENSE_RANK(): Same rank for ties, no gaps (1,2,2,3...)
|
| 42 |
+
-- - PARTITION BY: Restart ranking within each group
|
| 43 |
+
-- - ORDER BY: Defines ranking order within partition
|
rag/sample_templates/04_running_totals.sql
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Running Totals and Cumulative Sums
|
| 2 |
+
-- Pattern: Calculate cumulative values over ordered records
|
| 3 |
+
-- Use Case: Running balance, cumulative revenue, YTD totals
|
| 4 |
+
|
| 5 |
+
SELECT
|
| 6 |
+
order_date,
|
| 7 |
+
customer_id,
|
| 8 |
+
total_amount,
|
| 9 |
+
SUM(total_amount) OVER (
|
| 10 |
+
ORDER BY order_date
|
| 11 |
+
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
|
| 12 |
+
) as running_total,
|
| 13 |
+
SUM(total_amount) OVER (
|
| 14 |
+
PARTITION BY customer_id
|
| 15 |
+
ORDER BY order_date
|
| 16 |
+
) as customer_running_total,
|
| 17 |
+
AVG(total_amount) OVER (
|
| 18 |
+
ORDER BY order_date
|
| 19 |
+
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
|
| 20 |
+
) as moving_avg_7day
|
| 21 |
+
FROM orders
|
| 22 |
+
ORDER BY order_date;
|
| 23 |
+
|
| 24 |
+
-- Key Concepts:
|
| 25 |
+
-- - SUM() OVER (): Running total across all rows
|
| 26 |
+
-- - PARTITION BY: Separate running totals per customer
|
| 27 |
+
-- - ROWS BETWEEN: Define window frame
|
| 28 |
+
-- * UNBOUNDED PRECEDING: From start
|
| 29 |
+
-- * CURRENT ROW: Up to current row
|
| 30 |
+
-- * N PRECEDING: Previous N rows
|
| 31 |
+
-- - Useful for trends, YTD calculations, moving averages
|
rag/sample_templates/05_top_n_per_group.sql
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Top N Records Per Group
|
| 2 |
+
-- Pattern: Get top performers within each category/partition
|
| 3 |
+
-- Use Case: Best sellers per category, top customers per region
|
| 4 |
+
|
| 5 |
+
WITH ranked_products AS (
|
| 6 |
+
SELECT
|
| 7 |
+
p.product_id,
|
| 8 |
+
p.name,
|
| 9 |
+
p.category,
|
| 10 |
+
p.price,
|
| 11 |
+
COUNT(oi.order_id) as times_ordered,
|
| 12 |
+
SUM(oi.quantity) as total_quantity_sold,
|
| 13 |
+
SUM(oi.quantity * oi.unit_price) as total_revenue,
|
| 14 |
+
ROW_NUMBER() OVER (
|
| 15 |
+
PARTITION BY p.category
|
| 16 |
+
ORDER BY SUM(oi.quantity * oi.unit_price) DESC
|
| 17 |
+
) as revenue_rank
|
| 18 |
+
FROM products p
|
| 19 |
+
LEFT JOIN order_items oi ON p.product_id = oi.product_id
|
| 20 |
+
GROUP BY p.product_id, p.name, p.category, p.price
|
| 21 |
+
)
|
| 22 |
+
SELECT
|
| 23 |
+
category,
|
| 24 |
+
product_id,
|
| 25 |
+
name,
|
| 26 |
+
total_revenue,
|
| 27 |
+
total_quantity_sold,
|
| 28 |
+
revenue_rank
|
| 29 |
+
FROM ranked_products
|
| 30 |
+
WHERE revenue_rank <= 3
|
| 31 |
+
ORDER BY category, revenue_rank;
|
| 32 |
+
|
| 33 |
+
-- Key Concepts:
|
| 34 |
+
-- - CTE for better readability
|
| 35 |
+
-- - PARTITION BY category to rank within each group
|
| 36 |
+
-- - Filter WHERE rank <= N to get top N
|
| 37 |
+
-- - Useful for identifying best performers in each segment
|
rag/sample_templates/06_left_join_missing.sql
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Finding Missing Data with LEFT JOIN
|
| 2 |
+
-- Pattern: Identify records that don't have matching records in related table
|
| 3 |
+
-- Use Case: Customers without orders, products never sold, orphaned records
|
| 4 |
+
|
| 5 |
+
-- Example 1: Customers who have never placed an order
|
| 6 |
+
SELECT
|
| 7 |
+
c.customer_id,
|
| 8 |
+
c.name,
|
| 9 |
+
c.email,
|
| 10 |
+
c.registration_date
|
| 11 |
+
FROM customers c
|
| 12 |
+
LEFT JOIN orders o ON c.customer_id = o.customer_id
|
| 13 |
+
WHERE o.order_id IS NULL
|
| 14 |
+
ORDER BY c.registration_date DESC;
|
| 15 |
+
|
| 16 |
+
-- Example 2: Products that have never been ordered
|
| 17 |
+
SELECT
|
| 18 |
+
p.product_id,
|
| 19 |
+
p.name,
|
| 20 |
+
p.category,
|
| 21 |
+
p.price,
|
| 22 |
+
p.stock_quantity
|
| 23 |
+
FROM products p
|
| 24 |
+
LEFT JOIN order_items oi ON p.product_id = oi.product_id
|
| 25 |
+
WHERE oi.order_item_id IS NULL;
|
| 26 |
+
|
| 27 |
+
-- Key Concepts:
|
| 28 |
+
-- - LEFT JOIN keeps all records from left table
|
| 29 |
+
-- - WHERE column IS NULL finds unmatched records
|
| 30 |
+
-- - Must check a column from right table that cannot be NULL (like primary key)
|
| 31 |
+
-- - Alternative: NOT EXISTS (often faster for large datasets)
|
| 32 |
+
|
| 33 |
+
-- Alternative using NOT EXISTS:
|
| 34 |
+
SELECT
|
| 35 |
+
c.customer_id,
|
| 36 |
+
c.name,
|
| 37 |
+
c.email
|
| 38 |
+
FROM customers c
|
| 39 |
+
WHERE NOT EXISTS (
|
| 40 |
+
SELECT 1
|
| 41 |
+
FROM orders o
|
| 42 |
+
WHERE o.customer_id = c.customer_id
|
| 43 |
+
);
|
rag/sample_templates/07_exists_not_exists.sql
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: EXISTS and NOT EXISTS Set Operations
|
| 2 |
+
-- Pattern: Efficient subquery filtering for existence checks
|
| 3 |
+
-- Use Case: Find records that match/don't match conditions in other tables
|
| 4 |
+
|
| 5 |
+
-- Example 1: Customers who placed orders in 2024
|
| 6 |
+
SELECT
|
| 7 |
+
c.customer_id,
|
| 8 |
+
c.name,
|
| 9 |
+
c.email
|
| 10 |
+
FROM customers c
|
| 11 |
+
WHERE EXISTS (
|
| 12 |
+
SELECT 1
|
| 13 |
+
FROM orders o
|
| 14 |
+
WHERE o.customer_id = c.customer_id
|
| 15 |
+
AND o.order_date >= '2024-01-01'
|
| 16 |
+
AND o.order_date < '2025-01-01'
|
| 17 |
+
);
|
| 18 |
+
|
| 19 |
+
-- Example 2: Products ordered in 2023 but not in 2024
|
| 20 |
+
SELECT
|
| 21 |
+
p.product_id,
|
| 22 |
+
p.name,
|
| 23 |
+
p.category
|
| 24 |
+
FROM products p
|
| 25 |
+
WHERE EXISTS (
|
| 26 |
+
SELECT 1
|
| 27 |
+
FROM order_items oi
|
| 28 |
+
JOIN orders o ON oi.order_id = o.order_id
|
| 29 |
+
WHERE oi.product_id = p.product_id
|
| 30 |
+
AND o.order_date >= '2023-01-01'
|
| 31 |
+
AND o.order_date < '2024-01-01'
|
| 32 |
+
)
|
| 33 |
+
AND NOT EXISTS (
|
| 34 |
+
SELECT 1
|
| 35 |
+
FROM order_items oi
|
| 36 |
+
JOIN orders o ON oi.order_id = o.order_id
|
| 37 |
+
WHERE oi.product_id = p.product_id
|
| 38 |
+
AND o.order_date >= '2024-01-01'
|
| 39 |
+
AND o.order_date < '2025-01-01'
|
| 40 |
+
);
|
| 41 |
+
|
| 42 |
+
-- Key Concepts:
|
| 43 |
+
-- - EXISTS returns TRUE if subquery returns any rows
|
| 44 |
+
-- - More efficient than IN for large datasets
|
| 45 |
+
-- - Better NULL handling than IN/NOT IN
|
| 46 |
+
-- - Short-circuits: stops at first match
|
| 47 |
+
-- - Use SELECT 1 (constant) instead of SELECT * for efficiency
|
rag/sample_templates/08_cte_multi_step.sql
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Multi-Step CTEs for Complex Analysis
|
| 2 |
+
-- Pattern: Break complex queries into logical steps
|
| 3 |
+
-- Use Case: Complex calculations, data transformation pipelines
|
| 4 |
+
|
| 5 |
+
WITH
|
| 6 |
+
-- Step 1: Calculate customer metrics
|
| 7 |
+
customer_metrics AS (
|
| 8 |
+
SELECT
|
| 9 |
+
c.customer_id,
|
| 10 |
+
c.name,
|
| 11 |
+
COUNT(o.order_id) as total_orders,
|
| 12 |
+
SUM(o.total_amount) as total_spent,
|
| 13 |
+
MIN(o.order_date) as first_order_date,
|
| 14 |
+
MAX(o.order_date) as last_order_date
|
| 15 |
+
FROM customers c
|
| 16 |
+
LEFT JOIN orders o ON c.customer_id = o.customer_id
|
| 17 |
+
GROUP BY c.customer_id, c.name
|
| 18 |
+
),
|
| 19 |
+
-- Step 2: Calculate overall averages
|
| 20 |
+
overall_stats AS (
|
| 21 |
+
SELECT
|
| 22 |
+
AVG(total_spent) as avg_customer_value,
|
| 23 |
+
AVG(total_orders) as avg_orders_per_customer
|
| 24 |
+
FROM customer_metrics
|
| 25 |
+
),
|
| 26 |
+
-- Step 3: Classify customers
|
| 27 |
+
customer_segments AS (
|
| 28 |
+
SELECT
|
| 29 |
+
cm.*,
|
| 30 |
+
os.avg_customer_value,
|
| 31 |
+
CASE
|
| 32 |
+
WHEN cm.total_spent > os.avg_customer_value * 2 THEN 'VIP'
|
| 33 |
+
WHEN cm.total_spent > os.avg_customer_value THEN 'High Value'
|
| 34 |
+
WHEN cm.total_spent > 0 THEN 'Regular'
|
| 35 |
+
ELSE 'Inactive'
|
| 36 |
+
END as segment
|
| 37 |
+
FROM customer_metrics cm
|
| 38 |
+
CROSS JOIN overall_stats os
|
| 39 |
+
)
|
| 40 |
+
-- Final output
|
| 41 |
+
SELECT
|
| 42 |
+
segment,
|
| 43 |
+
COUNT(*) as customer_count,
|
| 44 |
+
AVG(total_spent) as avg_spent,
|
| 45 |
+
AVG(total_orders) as avg_orders
|
| 46 |
+
FROM customer_segments
|
| 47 |
+
GROUP BY segment
|
| 48 |
+
ORDER BY avg_spent DESC;
|
| 49 |
+
|
| 50 |
+
-- Key Concepts:
|
| 51 |
+
-- - WITH clause defines multiple CTEs (Common Table Expressions)
|
| 52 |
+
-- - Each CTE builds on previous ones
|
| 53 |
+
-- - Better readability than nested subqueries
|
| 54 |
+
-- - Can reference previous CTEs in later ones
|
| 55 |
+
-- - Improves maintainability and debugging
|
rag/sample_templates/09_cohort_analysis.sql
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Cohort Analysis
|
| 2 |
+
-- Pattern: Group customers by acquisition period and track behavior
|
| 3 |
+
-- Use Case: First purchase cohorts, retention analysis, lifetime value
|
| 4 |
+
|
| 5 |
+
WITH first_purchases AS (
|
| 6 |
+
SELECT
|
| 7 |
+
customer_id,
|
| 8 |
+
MIN(order_date) as cohort_month,
|
| 9 |
+
DATE_TRUNC('month', MIN(order_date)) as cohort_date
|
| 10 |
+
FROM orders
|
| 11 |
+
GROUP BY customer_id
|
| 12 |
+
),
|
| 13 |
+
customer_cohorts AS (
|
| 14 |
+
SELECT
|
| 15 |
+
o.customer_id,
|
| 16 |
+
o.order_date,
|
| 17 |
+
o.total_amount,
|
| 18 |
+
fp.cohort_date,
|
| 19 |
+
DATE_TRUNC('month', o.order_date) as order_month,
|
| 20 |
+
EXTRACT(YEAR FROM AGE(o.order_date, fp.cohort_date)) * 12 +
|
| 21 |
+
EXTRACT(MONTH FROM AGE(o.order_date, fp.cohort_date)) as months_since_first
|
| 22 |
+
FROM orders o
|
| 23 |
+
JOIN first_purchases fp ON o.customer_id = fp.customer_id
|
| 24 |
+
)
|
| 25 |
+
SELECT
|
| 26 |
+
cohort_date,
|
| 27 |
+
months_since_first,
|
| 28 |
+
COUNT(DISTINCT customer_id) as active_customers,
|
| 29 |
+
SUM(total_amount) as cohort_revenue,
|
| 30 |
+
AVG(total_amount) as avg_order_value
|
| 31 |
+
FROM customer_cohorts
|
| 32 |
+
GROUP BY cohort_date, months_since_first
|
| 33 |
+
ORDER BY cohort_date, months_since_first;
|
| 34 |
+
|
| 35 |
+
-- Key Concepts:
|
| 36 |
+
-- - Cohorts: Groups defined by shared characteristic (e.g., signup month)
|
| 37 |
+
-- - Track behavior over time relative to cohort start
|
| 38 |
+
-- - DATE_TRUNC for period grouping
|
| 39 |
+
-- - AGE function for time calculations
|
| 40 |
+
-- - Useful for retention and LTV analysis
|
rag/sample_templates/10_yoy_comparison.sql
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Year-over-Year Comparison
|
| 2 |
+
-- Pattern: Compare metrics across time periods
|
| 3 |
+
-- Use Case: Revenue growth, seasonal trends, period comparisons
|
| 4 |
+
|
| 5 |
+
WITH monthly_revenue AS (
|
| 6 |
+
SELECT
|
| 7 |
+
DATE_TRUNC('month', order_date) as month,
|
| 8 |
+
EXTRACT(YEAR FROM order_date) as year,
|
| 9 |
+
EXTRACT(MONTH FROM order_date) as month_num,
|
| 10 |
+
SUM(total_amount) as revenue,
|
| 11 |
+
COUNT(DISTINCT customer_id) as unique_customers
|
| 12 |
+
FROM orders
|
| 13 |
+
GROUP BY DATE_TRUNC('month', order_date),
|
| 14 |
+
EXTRACT(YEAR FROM order_date),
|
| 15 |
+
EXTRACT(MONTH FROM order_date)
|
| 16 |
+
)
|
| 17 |
+
SELECT
|
| 18 |
+
curr.month as current_month,
|
| 19 |
+
curr.revenue as current_revenue,
|
| 20 |
+
prev.revenue as previous_year_revenue,
|
| 21 |
+
curr.revenue - prev.revenue as revenue_change,
|
| 22 |
+
ROUND(((curr.revenue - prev.revenue) / prev.revenue * 100), 2) as growth_pct,
|
| 23 |
+
curr.unique_customers as current_customers,
|
| 24 |
+
prev.unique_customers as previous_year_customers
|
| 25 |
+
FROM monthly_revenue curr
|
| 26 |
+
LEFT JOIN monthly_revenue prev
|
| 27 |
+
ON curr.month_num = prev.month_num
|
| 28 |
+
AND curr.year = prev.year + 1
|
| 29 |
+
WHERE prev.revenue IS NOT NULL
|
| 30 |
+
ORDER BY curr.month DESC;
|
| 31 |
+
|
| 32 |
+
-- Key Concepts:
|
| 33 |
+
-- - DATE_TRUNC for period aggregation
|
| 34 |
+
-- - Self-join to compare same periods across years
|
| 35 |
+
-- - Percentage change calculation
|
| 36 |
+
-- - EXTRACT for getting year/month components
|
| 37 |
+
-- - Useful for trend analysis and forecasting
|
rag/sample_templates/11_moving_average.sql
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Moving Average (Rolling Average)
|
| 2 |
+
-- Pattern: Calculate average over sliding time window
|
| 3 |
+
-- Use Case: Smooth out fluctuations, identify trends, 7-day MA, 30-day MA
|
| 4 |
+
|
| 5 |
+
SELECT
|
| 6 |
+
order_date,
|
| 7 |
+
daily_revenue,
|
| 8 |
+
AVG(daily_revenue) OVER (
|
| 9 |
+
ORDER BY order_date
|
| 10 |
+
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
|
| 11 |
+
) as moving_avg_7day,
|
| 12 |
+
AVG(daily_revenue) OVER (
|
| 13 |
+
ORDER BY order_date
|
| 14 |
+
ROWS BETWEEN 29 PRECEDING AND CURRENT ROW
|
| 15 |
+
) as moving_avg_30day,
|
| 16 |
+
daily_order_count,
|
| 17 |
+
AVG(daily_order_count) OVER (
|
| 18 |
+
ORDER BY order_date
|
| 19 |
+
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
|
| 20 |
+
) as avg_orders_7day
|
| 21 |
+
FROM (
|
| 22 |
+
SELECT
|
| 23 |
+
DATE(order_date) as order_date,
|
| 24 |
+
SUM(total_amount) as daily_revenue,
|
| 25 |
+
COUNT(*) as daily_order_count
|
| 26 |
+
FROM orders
|
| 27 |
+
GROUP BY DATE(order_date)
|
| 28 |
+
) daily_stats
|
| 29 |
+
ORDER BY order_date;
|
| 30 |
+
|
| 31 |
+
-- Key Concepts:
|
| 32 |
+
-- - Window function with ROWS BETWEEN for sliding window
|
| 33 |
+
-- - N PRECEDING means previous N rows
|
| 34 |
+
-- - CURRENT ROW includes the current row
|
| 35 |
+
-- - For 7-day MA: use 6 PRECEDING (includes current = 7 total)
|
| 36 |
+
-- - Useful for smoothing volatile metrics
|
rag/sample_templates/12_self_join.sql
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Self-Join for Hierarchical or Sequential Data
|
| 2 |
+
-- Pattern: Join table to itself to find relationships within same table
|
| 3 |
+
-- Use Case: Manager-employee, sequential orders, referrals, product recommendations
|
| 4 |
+
|
| 5 |
+
-- Example 1: Find customers who ordered same product
|
| 6 |
+
SELECT DISTINCT
|
| 7 |
+
c1.customer_id as customer1,
|
| 8 |
+
c1.name as customer1_name,
|
| 9 |
+
c2.customer_id as customer2,
|
| 10 |
+
c2.name as customer2_name,
|
| 11 |
+
oi1.product_id,
|
| 12 |
+
p.name as product_name
|
| 13 |
+
FROM order_items oi1
|
| 14 |
+
JOIN order_items oi2 ON oi1.product_id = oi2.product_id
|
| 15 |
+
AND oi1.order_id < oi2.order_id -- Avoid duplicates
|
| 16 |
+
JOIN orders o1 ON oi1.order_id = o1.order_id
|
| 17 |
+
JOIN orders o2 ON oi2.order_id = o2.order_id
|
| 18 |
+
JOIN customers c1 ON o1.customer_id = c1.customer_id
|
| 19 |
+
JOIN customers c2 ON o2.customer_id = c2.customer_id
|
| 20 |
+
JOIN products p ON oi1.product_id = p.product_id
|
| 21 |
+
WHERE c1.customer_id != c2.customer_id;
|
| 22 |
+
|
| 23 |
+
-- Example 2: Find sequential orders by same customer
|
| 24 |
+
SELECT
|
| 25 |
+
c.name,
|
| 26 |
+
o1.order_id as first_order,
|
| 27 |
+
o1.order_date as first_date,
|
| 28 |
+
o2.order_id as next_order,
|
| 29 |
+
o2.order_date as next_date,
|
| 30 |
+
o2.order_date - o1.order_date as days_between
|
| 31 |
+
FROM orders o1
|
| 32 |
+
JOIN orders o2 ON o1.customer_id = o2.customer_id
|
| 33 |
+
AND o2.order_date > o1.order_date
|
| 34 |
+
JOIN customers c ON o1.customer_id = c.customer_id
|
| 35 |
+
ORDER BY c.name, o1.order_date;
|
| 36 |
+
|
| 37 |
+
-- Key Concepts:
|
| 38 |
+
-- - Join table to itself with different aliases
|
| 39 |
+
-- - Use inequality (< or !=) to avoid matching same row
|
| 40 |
+
-- - Useful for finding patterns, sequences, or relationships
|
| 41 |
+
-- - Can be combined with window functions for "next" or "previous" record
|
rag/sample_templates/13_union_dedupe.sql
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: UNION vs UNION ALL for Deduplication
|
| 2 |
+
-- Pattern: Combine results from multiple queries
|
| 3 |
+
-- Use Case: Merge data from different sources, combine segments
|
| 4 |
+
|
| 5 |
+
-- UNION ALL: Keeps all rows including duplicates (FASTER)
|
| 6 |
+
SELECT customer_id, name, 'Active' as status
|
| 7 |
+
FROM customers
|
| 8 |
+
WHERE last_order_date >= CURRENT_DATE - INTERVAL '90 days'
|
| 9 |
+
UNION ALL
|
| 10 |
+
SELECT customer_id, name, 'VIP' as status
|
| 11 |
+
FROM customers
|
| 12 |
+
WHERE total_lifetime_value > 10000;
|
| 13 |
+
|
| 14 |
+
-- UNION: Removes duplicates (SLOWER but cleaner)
|
| 15 |
+
SELECT customer_id, name, email
|
| 16 |
+
FROM customers
|
| 17 |
+
WHERE city = 'New York'
|
| 18 |
+
UNION
|
| 19 |
+
SELECT customer_id, name, email
|
| 20 |
+
FROM customers
|
| 21 |
+
WHERE total_lifetime_value > 5000;
|
| 22 |
+
|
| 23 |
+
-- Example: Combine current and archived orders
|
| 24 |
+
SELECT
|
| 25 |
+
order_id,
|
| 26 |
+
customer_id,
|
| 27 |
+
order_date,
|
| 28 |
+
total_amount,
|
| 29 |
+
'current' as source
|
| 30 |
+
FROM orders
|
| 31 |
+
WHERE order_date >= '2024-01-01'
|
| 32 |
+
UNION ALL
|
| 33 |
+
SELECT
|
| 34 |
+
order_id,
|
| 35 |
+
customer_id,
|
| 36 |
+
order_date,
|
| 37 |
+
total_amount,
|
| 38 |
+
'archived' as source
|
| 39 |
+
FROM archived_orders
|
| 40 |
+
WHERE order_date < '2024-01-01';
|
| 41 |
+
|
| 42 |
+
-- Key Concepts:
|
| 43 |
+
-- - UNION removes duplicates (requires sort/compare - slower)
|
| 44 |
+
-- - UNION ALL keeps all rows (faster, no deduplication)
|
| 45 |
+
-- - All SELECT statements must have same number and type of columns
|
| 46 |
+
-- - Use UNION ALL when you know there are no duplicates
|
| 47 |
+
-- - Add source identifier column to track origin
|
rag/sample_templates/14_pivoting.sql
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Pivoting Data (CASE with Aggregation)
|
| 2 |
+
-- Pattern: Transform rows into columns
|
| 3 |
+
-- Use Case: Crosstab reports, monthly summaries, category breakdowns
|
| 4 |
+
|
| 5 |
+
-- Example 1: Revenue by month in columns
|
| 6 |
+
SELECT
|
| 7 |
+
EXTRACT(YEAR FROM order_date) as year,
|
| 8 |
+
SUM(CASE WHEN EXTRACT(MONTH FROM order_date) = 1 THEN total_amount ELSE 0 END) as jan,
|
| 9 |
+
SUM(CASE WHEN EXTRACT(MONTH FROM order_date) = 2 THEN total_amount ELSE 0 END) as feb,
|
| 10 |
+
SUM(CASE WHEN EXTRACT(MONTH FROM order_date) = 3 THEN total_amount ELSE 0 END) as mar,
|
| 11 |
+
SUM(CASE WHEN EXTRACT(MONTH FROM order_date) = 4 THEN total_amount ELSE 0 END) as apr,
|
| 12 |
+
SUM(CASE WHEN EXTRACT(MONTH FROM order_date) = 5 THEN total_amount ELSE 0 END) as may,
|
| 13 |
+
SUM(CASE WHEN EXTRACT(MONTH FROM order_date) = 6 THEN total_amount ELSE 0 END) as jun,
|
| 14 |
+
SUM(total_amount) as total_year
|
| 15 |
+
FROM orders
|
| 16 |
+
GROUP BY EXTRACT(YEAR FROM order_date)
|
| 17 |
+
ORDER BY year;
|
| 18 |
+
|
| 19 |
+
-- Example 2: Customer count by status and city
|
| 20 |
+
SELECT
|
| 21 |
+
city,
|
| 22 |
+
SUM(CASE WHEN status = 'active' THEN 1 ELSE 0 END) as active_customers,
|
| 23 |
+
SUM(CASE WHEN status = 'inactive' THEN 1 ELSE 0 END) as inactive_customers,
|
| 24 |
+
SUM(CASE WHEN status = 'vip' THEN 1 ELSE 0 END) as vip_customers,
|
| 25 |
+
COUNT(*) as total_customers
|
| 26 |
+
FROM customers
|
| 27 |
+
GROUP BY city
|
| 28 |
+
ORDER BY total_customers DESC;
|
| 29 |
+
|
| 30 |
+
-- Key Concepts:
|
| 31 |
+
-- - CASE WHEN inside aggregate function
|
| 32 |
+
-- - Each CASE creates a new column
|
| 33 |
+
-- - SUM with 0/1 for counts, SUM with value for totals
|
| 34 |
+
-- - Alternative: Use FILTER (WHERE) in PostgreSQL
|
| 35 |
+
-- - Useful for summary reports and dashboards
|
rag/sample_templates/15_subquery_optimization.sql
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-- Template: Subquery Optimization - NOT IN vs NOT EXISTS
|
| 2 |
+
-- Pattern: Efficient ways to exclude records based on subquery
|
| 3 |
+
-- Use Case: Find records that don't match conditions, anti-joins
|
| 4 |
+
|
| 5 |
+
-- ❌ SLOWER: NOT IN with subquery (issues with NULL values)
|
| 6 |
+
SELECT customer_id, name
|
| 7 |
+
FROM customers
|
| 8 |
+
WHERE customer_id NOT IN (
|
| 9 |
+
SELECT customer_id
|
| 10 |
+
FROM orders
|
| 11 |
+
WHERE order_date >= '2024-01-01'
|
| 12 |
+
);
|
| 13 |
+
-- Problem: If orders.customer_id has ANY NULL, entire query returns empty!
|
| 14 |
+
|
| 15 |
+
-- ✅ BETTER: NOT EXISTS (faster and NULL-safe)
|
| 16 |
+
SELECT c.customer_id, c.name
|
| 17 |
+
FROM customers c
|
| 18 |
+
WHERE NOT EXISTS (
|
| 19 |
+
SELECT 1
|
| 20 |
+
FROM orders o
|
| 21 |
+
WHERE o.customer_id = c.customer_id
|
| 22 |
+
AND o.order_date >= '2024-01-01'
|
| 23 |
+
);
|
| 24 |
+
|
| 25 |
+
-- ✅ ALTERNATIVE: LEFT JOIN with NULL check
|
| 26 |
+
SELECT c.customer_id, c.name
|
| 27 |
+
FROM customers c
|
| 28 |
+
LEFT JOIN orders o ON c.customer_id = o.customer_id
|
| 29 |
+
AND o.order_date >= '2024-01-01'
|
| 30 |
+
WHERE o.order_id IS NULL;
|
| 31 |
+
|
| 32 |
+
-- Example: Products NOT ordered in specific date range
|
| 33 |
+
SELECT p.product_id, p.name, p.category
|
| 34 |
+
FROM products p
|
| 35 |
+
WHERE NOT EXISTS (
|
| 36 |
+
SELECT 1
|
| 37 |
+
FROM order_items oi
|
| 38 |
+
JOIN orders o ON oi.order_id = o.order_id
|
| 39 |
+
WHERE oi.product_id = p.product_id
|
| 40 |
+
AND o.order_date >= '2024-01-01'
|
| 41 |
+
AND o.order_date < '2024-04-01'
|
| 42 |
+
);
|
| 43 |
+
|
| 44 |
+
-- Key Concepts:
|
| 45 |
+
-- - NOT IN fails if subquery returns NULL
|
| 46 |
+
-- - NOT EXISTS is NULL-safe and often faster
|
| 47 |
+
-- - LEFT JOIN with IS NULL also works well
|
| 48 |
+
-- - NOT EXISTS can short-circuit (stops at first match)
|
| 49 |
+
-- - Use SELECT 1 in EXISTS for efficiency
|
rag/template_store.py
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
RAG Template Store using LlamaIndex
|
| 3 |
+
PRIMARY SPONSOR INTEGRATION - LlamaIndex
|
| 4 |
+
Provides similar pattern suggestions from ETL template library
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from typing import List, Dict
|
| 10 |
+
from llama_index.core import VectorStoreIndex, Document, StorageContext
|
| 11 |
+
from llama_index.core.node_parser import SimpleNodeParser
|
| 12 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
| 13 |
+
from llama_index.core import Settings
|
| 14 |
+
import chromadb
|
| 15 |
+
from llama_index.vector_stores.chroma import ChromaVectorStore
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class TemplateStore:
|
| 19 |
+
"""
|
| 20 |
+
RAG-powered template store using LlamaIndex
|
| 21 |
+
Finds similar SQL patterns from template library
|
| 22 |
+
"""
|
| 23 |
+
|
| 24 |
+
def __init__(self, templates_dir: str = None):
|
| 25 |
+
"""Initialize the template store with LlamaIndex"""
|
| 26 |
+
|
| 27 |
+
if templates_dir is None:
|
| 28 |
+
# Default to sample_templates directory
|
| 29 |
+
current_dir = Path(__file__).parent
|
| 30 |
+
templates_dir = current_dir / "sample_templates"
|
| 31 |
+
else:
|
| 32 |
+
templates_dir = Path(templates_dir)
|
| 33 |
+
|
| 34 |
+
self.templates_dir = templates_dir
|
| 35 |
+
|
| 36 |
+
# Initialize OpenAI embeddings
|
| 37 |
+
try:
|
| 38 |
+
Settings.embed_model = OpenAIEmbedding(
|
| 39 |
+
model="text-embedding-3-small",
|
| 40 |
+
api_key=os.getenv("OPENAI_API_KEY")
|
| 41 |
+
)
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"⚠️ Warning: Could not initialize OpenAI embeddings: {e}")
|
| 44 |
+
print(" RAG features will be limited. Set OPENAI_API_KEY in .env")
|
| 45 |
+
self.index = None
|
| 46 |
+
return
|
| 47 |
+
|
| 48 |
+
# Initialize ChromaDB
|
| 49 |
+
try:
|
| 50 |
+
chroma_client = chromadb.EphemeralClient()
|
| 51 |
+
chroma_collection = chroma_client.create_collection("sql_templates")
|
| 52 |
+
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
| 53 |
+
storage_context = StorageContext.from_defaults(vector_store=vector_store)
|
| 54 |
+
|
| 55 |
+
# Load templates
|
| 56 |
+
documents = self._load_templates()
|
| 57 |
+
|
| 58 |
+
if not documents:
|
| 59 |
+
print("⚠️ Warning: No templates found")
|
| 60 |
+
self.index = None
|
| 61 |
+
return
|
| 62 |
+
|
| 63 |
+
# Create index
|
| 64 |
+
self.index = VectorStoreIndex.from_documents(
|
| 65 |
+
documents,
|
| 66 |
+
storage_context=storage_context
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
print(f"✓ RAG Template Store initialized with {len(documents)} templates")
|
| 70 |
+
|
| 71 |
+
except Exception as e:
|
| 72 |
+
print(f"⚠️ Warning: Could not initialize RAG: {e}")
|
| 73 |
+
self.index = None
|
| 74 |
+
|
| 75 |
+
def _load_templates(self) -> List[Document]:
|
| 76 |
+
"""Load all SQL templates from directory"""
|
| 77 |
+
documents = []
|
| 78 |
+
|
| 79 |
+
if not self.templates_dir.exists():
|
| 80 |
+
print(f"⚠️ Warning: Templates directory not found: {self.templates_dir}")
|
| 81 |
+
return documents
|
| 82 |
+
|
| 83 |
+
# Load all .sql files
|
| 84 |
+
for sql_file in sorted(self.templates_dir.glob("*.sql")):
|
| 85 |
+
try:
|
| 86 |
+
with open(sql_file, 'r', encoding='utf-8') as f:
|
| 87 |
+
content = f.read()
|
| 88 |
+
|
| 89 |
+
# Extract template name from filename
|
| 90 |
+
template_name = sql_file.stem.replace('_', ' ').title()
|
| 91 |
+
|
| 92 |
+
# Create document with metadata
|
| 93 |
+
doc = Document(
|
| 94 |
+
text=content,
|
| 95 |
+
metadata={
|
| 96 |
+
"filename": sql_file.name,
|
| 97 |
+
"template_name": template_name,
|
| 98 |
+
"path": str(sql_file)
|
| 99 |
+
}
|
| 100 |
+
)
|
| 101 |
+
documents.append(doc)
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
print(f"⚠️ Warning: Could not load template {sql_file}: {e}")
|
| 105 |
+
|
| 106 |
+
return documents
|
| 107 |
+
|
| 108 |
+
def find_similar(self, query: str, top_k: int = 3) -> List[Dict]:
|
| 109 |
+
"""
|
| 110 |
+
Find similar templates based on natural language query
|
| 111 |
+
|
| 112 |
+
Args:
|
| 113 |
+
query: Natural language description of desired pattern
|
| 114 |
+
top_k: Number of similar templates to return
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
List of dicts with template info and similarity scores
|
| 118 |
+
"""
|
| 119 |
+
if self.index is None:
|
| 120 |
+
return []
|
| 121 |
+
|
| 122 |
+
try:
|
| 123 |
+
# Query the index
|
| 124 |
+
retriever = self.index.as_retriever(similarity_top_k=top_k)
|
| 125 |
+
nodes = retriever.retrieve(query)
|
| 126 |
+
|
| 127 |
+
results = []
|
| 128 |
+
for node in nodes:
|
| 129 |
+
# Extract template information
|
| 130 |
+
template_info = {
|
| 131 |
+
"template_name": node.metadata.get("template_name", "Unknown"),
|
| 132 |
+
"filename": node.metadata.get("filename", ""),
|
| 133 |
+
"content": node.text,
|
| 134 |
+
"score": node.score if hasattr(node, 'score') else 0.0,
|
| 135 |
+
"excerpt": self._extract_excerpt(node.text)
|
| 136 |
+
}
|
| 137 |
+
results.append(template_info)
|
| 138 |
+
|
| 139 |
+
return results
|
| 140 |
+
|
| 141 |
+
except Exception as e:
|
| 142 |
+
print(f"⚠️ Warning: Error finding similar templates: {e}")
|
| 143 |
+
return []
|
| 144 |
+
|
| 145 |
+
def _extract_excerpt(self, content: str, max_lines: int = 5) -> str:
|
| 146 |
+
"""Extract a short excerpt from template"""
|
| 147 |
+
lines = content.split('\n')
|
| 148 |
+
|
| 149 |
+
# Skip comment lines and find actual SQL
|
| 150 |
+
sql_lines = []
|
| 151 |
+
for line in lines:
|
| 152 |
+
stripped = line.strip()
|
| 153 |
+
if stripped and not stripped.startswith('--'):
|
| 154 |
+
sql_lines.append(line)
|
| 155 |
+
if len(sql_lines) >= max_lines:
|
| 156 |
+
break
|
| 157 |
+
|
| 158 |
+
if sql_lines:
|
| 159 |
+
excerpt = '\n'.join(sql_lines[:max_lines])
|
| 160 |
+
if len(sql_lines) > max_lines:
|
| 161 |
+
excerpt += "\n..."
|
| 162 |
+
return excerpt
|
| 163 |
+
else:
|
| 164 |
+
# Return first few non-empty lines if no SQL found
|
| 165 |
+
non_empty = [l for l in lines if l.strip()][:max_lines]
|
| 166 |
+
return '\n'.join(non_empty)
|
| 167 |
+
|
| 168 |
+
def get_all_templates(self) -> List[Dict]:
|
| 169 |
+
"""Get information about all available templates"""
|
| 170 |
+
templates = []
|
| 171 |
+
|
| 172 |
+
if not self.templates_dir.exists():
|
| 173 |
+
return templates
|
| 174 |
+
|
| 175 |
+
for sql_file in sorted(self.templates_dir.glob("*.sql")):
|
| 176 |
+
try:
|
| 177 |
+
with open(sql_file, 'r', encoding='utf-8') as f:
|
| 178 |
+
content = f.read()
|
| 179 |
+
|
| 180 |
+
# Extract first comment line as description
|
| 181 |
+
first_line = content.split('\n')[0].strip()
|
| 182 |
+
description = first_line.replace('--', '').strip() if first_line.startswith('--') else ""
|
| 183 |
+
|
| 184 |
+
templates.append({
|
| 185 |
+
"filename": sql_file.name,
|
| 186 |
+
"template_name": sql_file.stem.replace('_', ' ').title(),
|
| 187 |
+
"description": description,
|
| 188 |
+
"path": str(sql_file)
|
| 189 |
+
})
|
| 190 |
+
except Exception as e:
|
| 191 |
+
print(f"⚠️ Warning: Error reading template {sql_file}: {e}")
|
| 192 |
+
|
| 193 |
+
return templates
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
# Singleton instance
|
| 197 |
+
_template_store = None
|
| 198 |
+
|
| 199 |
+
def get_template_store() -> TemplateStore:
|
| 200 |
+
"""Get or create the global template store instance"""
|
| 201 |
+
global _template_store
|
| 202 |
+
if _template_store is None:
|
| 203 |
+
_template_store = TemplateStore()
|
| 204 |
+
return _template_store
|
requirements.txt
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core UI
|
| 2 |
+
gradio>=4.44.1
|
| 3 |
+
python-dotenv==1.0.0
|
| 4 |
+
|
| 5 |
+
# AI/ML
|
| 6 |
+
anthropic>=0.39.0
|
| 7 |
+
|
| 8 |
+
# PRIMARY SPONSOR - LlamaIndex RAG
|
| 9 |
+
llama-index==0.9.14
|
| 10 |
+
llama-index-embeddings-openai
|
| 11 |
+
chromadb==0.4.18
|
| 12 |
+
openai
|
| 13 |
+
|
| 14 |
+
# SECONDARY SPONSOR - Modal Testing
|
| 15 |
+
modal>=1.2.0
|
| 16 |
+
|
| 17 |
+
# Database
|
| 18 |
+
sqlalchemy==2.0.23
|
| 19 |
+
pandas==2.1.3
|
| 20 |
+
duckdb==0.9.2
|
| 21 |
+
|
| 22 |
+
# SQL Processing
|
| 23 |
+
sqlparse==0.4.4
|
| 24 |
+
jinja2==3.1.2
|
| 25 |
+
pyyaml==6.0.1
|
| 26 |
+
|
| 27 |
+
# Optional
|
| 28 |
+
plotly==5.18.0
|
sample.db
ADDED
|
Binary file (45.1 kB). View file
|
|
|
schema_analyzer.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sqlite3
|
| 2 |
+
|
| 3 |
+
class SchemaAnalyzer:
|
| 4 |
+
"""Analyzes database schema"""
|
| 5 |
+
|
| 6 |
+
def __init__(self, db_path='sample.db'):
|
| 7 |
+
self.db_path = db_path
|
| 8 |
+
|
| 9 |
+
def get_schema(self):
|
| 10 |
+
"""Get complete database schema"""
|
| 11 |
+
conn = sqlite3.connect(self.db_path)
|
| 12 |
+
cursor = conn.cursor()
|
| 13 |
+
|
| 14 |
+
# Get all tables
|
| 15 |
+
cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
|
| 16 |
+
tables = [row[0] for row in cursor.fetchall()]
|
| 17 |
+
|
| 18 |
+
schema = {}
|
| 19 |
+
for table in tables:
|
| 20 |
+
cursor.execute(f"PRAGMA table_info({table})")
|
| 21 |
+
columns = []
|
| 22 |
+
for row in cursor.fetchall():
|
| 23 |
+
columns.append({
|
| 24 |
+
"name": row[1],
|
| 25 |
+
"type": row[2],
|
| 26 |
+
"nullable": not row[3],
|
| 27 |
+
"primary_key": bool(row[5])
|
| 28 |
+
})
|
| 29 |
+
schema[table] = columns
|
| 30 |
+
|
| 31 |
+
conn.close()
|
| 32 |
+
return schema
|
sql_validator.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
SQL Query Validator and Optimizer
|
| 3 |
+
Provides validation, optimization suggestions, and query analysis
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import re
|
| 7 |
+
from typing import Dict, List, Tuple
|
| 8 |
+
|
| 9 |
+
class SQLValidator:
|
| 10 |
+
"""Validates and analyzes SQL queries"""
|
| 11 |
+
|
| 12 |
+
def __init__(self, schema: Dict):
|
| 13 |
+
self.schema = schema
|
| 14 |
+
self.table_names = set(schema.keys())
|
| 15 |
+
self.column_map = {}
|
| 16 |
+
|
| 17 |
+
# Build column map for quick lookup
|
| 18 |
+
for table, columns in schema.items():
|
| 19 |
+
for col in columns:
|
| 20 |
+
col_name = col['name'].lower()
|
| 21 |
+
if col_name not in self.column_map:
|
| 22 |
+
self.column_map[col_name] = []
|
| 23 |
+
self.column_map[col_name].append(table)
|
| 24 |
+
|
| 25 |
+
def validate(self, sql: str) -> Dict[str, any]:
|
| 26 |
+
"""
|
| 27 |
+
Validate SQL query against schema
|
| 28 |
+
Returns dict with validation results
|
| 29 |
+
"""
|
| 30 |
+
results = {
|
| 31 |
+
"valid": True,
|
| 32 |
+
"errors": [],
|
| 33 |
+
"warnings": [],
|
| 34 |
+
"suggestions": [],
|
| 35 |
+
"query_type": self._detect_query_type(sql)
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
# Check for common SQL anti-patterns
|
| 39 |
+
self._check_null_comparison(sql, results)
|
| 40 |
+
self._check_select_star(sql, results)
|
| 41 |
+
self._check_missing_where(sql, results)
|
| 42 |
+
self._check_implicit_joins(sql, results)
|
| 43 |
+
self._check_table_names(sql, results)
|
| 44 |
+
|
| 45 |
+
# If we found errors, mark as invalid
|
| 46 |
+
if results["errors"]:
|
| 47 |
+
results["valid"] = False
|
| 48 |
+
|
| 49 |
+
return results
|
| 50 |
+
|
| 51 |
+
def _detect_query_type(self, sql: str) -> str:
|
| 52 |
+
"""Detect the type of query"""
|
| 53 |
+
sql_upper = sql.upper()
|
| 54 |
+
|
| 55 |
+
if "WITH" in sql_upper and "AS" in sql_upper:
|
| 56 |
+
return "cte"
|
| 57 |
+
elif any(func in sql_upper for func in ["ROW_NUMBER(", "RANK(", "DENSE_RANK(", "PARTITION BY"]):
|
| 58 |
+
return "window"
|
| 59 |
+
elif "GROUP BY" in sql_upper or any(func in sql_upper for func in ["COUNT(", "SUM(", "AVG(", "MAX(", "MIN("]):
|
| 60 |
+
return "aggregate"
|
| 61 |
+
elif "JOIN" in sql_upper:
|
| 62 |
+
return "join"
|
| 63 |
+
elif "UNION" in sql_upper:
|
| 64 |
+
return "union"
|
| 65 |
+
elif "EXISTS" in sql_upper or "IN (SELECT" in sql_upper:
|
| 66 |
+
return "subquery"
|
| 67 |
+
else:
|
| 68 |
+
return "simple"
|
| 69 |
+
|
| 70 |
+
def _check_null_comparison(self, sql: str, results: Dict):
|
| 71 |
+
"""Check for = NULL instead of IS NULL"""
|
| 72 |
+
if re.search(r"=\s*NULL|!=\s*NULL|<>\s*NULL", sql, re.IGNORECASE):
|
| 73 |
+
results["errors"].append(
|
| 74 |
+
"Use IS NULL or IS NOT NULL instead of = NULL or != NULL"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
def _check_select_star(self, sql: str, results: Dict):
|
| 78 |
+
"""Warn about SELECT *"""
|
| 79 |
+
if re.search(r"SELECT\s+\*", sql, re.IGNORECASE):
|
| 80 |
+
results["warnings"].append(
|
| 81 |
+
"Consider specifying column names instead of SELECT * for better performance"
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
def _check_missing_where(self, sql: str, results: Dict):
|
| 85 |
+
"""Check for queries without WHERE clause on large tables"""
|
| 86 |
+
sql_upper = sql.upper()
|
| 87 |
+
if "DELETE" in sql_upper or "UPDATE" in sql_upper:
|
| 88 |
+
if "WHERE" not in sql_upper:
|
| 89 |
+
results["errors"].append(
|
| 90 |
+
"DELETE or UPDATE without WHERE clause will affect all rows"
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
def _check_implicit_joins(self, sql: str, results: Dict):
|
| 94 |
+
"""Check for implicit joins (comma-separated tables)"""
|
| 95 |
+
# Look for FROM table1, table2 pattern
|
| 96 |
+
if re.search(r"FROM\s+\w+\s*,\s*\w+", sql, re.IGNORECASE):
|
| 97 |
+
results["suggestions"].append(
|
| 98 |
+
"Consider using explicit JOIN syntax instead of comma-separated tables"
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
def _check_table_names(self, sql: str, results: Dict):
|
| 102 |
+
"""Check if referenced tables exist in schema"""
|
| 103 |
+
# Extract table names from FROM and JOIN clauses
|
| 104 |
+
from_pattern = r"FROM\s+(\w+)"
|
| 105 |
+
join_pattern = r"JOIN\s+(\w+)"
|
| 106 |
+
|
| 107 |
+
tables_in_query = set()
|
| 108 |
+
|
| 109 |
+
for match in re.finditer(from_pattern, sql, re.IGNORECASE):
|
| 110 |
+
tables_in_query.add(match.group(1).lower())
|
| 111 |
+
|
| 112 |
+
for match in re.finditer(join_pattern, sql, re.IGNORECASE):
|
| 113 |
+
tables_in_query.add(match.group(1).lower())
|
| 114 |
+
|
| 115 |
+
# Check against schema
|
| 116 |
+
schema_tables = set(t.lower() for t in self.table_names)
|
| 117 |
+
invalid_tables = tables_in_query - schema_tables
|
| 118 |
+
|
| 119 |
+
if invalid_tables:
|
| 120 |
+
results["errors"].append(
|
| 121 |
+
f"Table(s) not found in schema: {', '.join(invalid_tables)}"
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
def suggest_optimizations(self, sql: str) -> List[str]:
|
| 125 |
+
"""Suggest optimizations for the query"""
|
| 126 |
+
suggestions = []
|
| 127 |
+
sql_upper = sql.upper()
|
| 128 |
+
|
| 129 |
+
# Check for NOT IN with subquery
|
| 130 |
+
if "NOT IN (SELECT" in sql_upper:
|
| 131 |
+
suggestions.append(
|
| 132 |
+
"Consider using NOT EXISTS instead of NOT IN for better NULL handling"
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Check for multiple subqueries
|
| 136 |
+
subquery_count = sql_upper.count("(SELECT")
|
| 137 |
+
if subquery_count > 2:
|
| 138 |
+
suggestions.append(
|
| 139 |
+
"Consider using CTEs (WITH clause) for better readability with multiple subqueries"
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
# Check for DISTINCT
|
| 143 |
+
if "DISTINCT" in sql_upper and "GROUP BY" not in sql_upper:
|
| 144 |
+
suggestions.append(
|
| 145 |
+
"DISTINCT can be expensive. Consider if GROUP BY might be more appropriate"
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
# Check for ORDER BY in subquery
|
| 149 |
+
if re.search(r"\(SELECT.*ORDER BY.*\)", sql, re.IGNORECASE):
|
| 150 |
+
suggestions.append(
|
| 151 |
+
"ORDER BY in subquery may be ignored. Apply ORDER BY to outer query"
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
return suggestions
|
| 155 |
+
|
| 156 |
+
def format_sql(self, sql: str) -> str:
|
| 157 |
+
"""Basic SQL formatting for readability"""
|
| 158 |
+
# This is a simple formatter - for production use a proper SQL formatter
|
| 159 |
+
formatted = sql.strip()
|
| 160 |
+
|
| 161 |
+
# Add newlines before major keywords
|
| 162 |
+
keywords = ['SELECT', 'FROM', 'WHERE', 'GROUP BY', 'HAVING', 'ORDER BY', 'LIMIT']
|
| 163 |
+
for keyword in keywords:
|
| 164 |
+
formatted = re.sub(
|
| 165 |
+
f'\\b{keyword}\\b',
|
| 166 |
+
f'\n{keyword}',
|
| 167 |
+
formatted,
|
| 168 |
+
flags=re.IGNORECASE
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
return formatted.strip()
|
testing/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Testing module for CodeFlow AI
|
| 3 |
+
Uses Modal for serverless SQL execution
|
| 4 |
+
"""
|
testing/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (265 Bytes). View file
|
|
|
testing/__pycache__/test_runner.cpython-311.pyc
ADDED
|
Binary file (9.64 kB). View file
|
|
|
testing/test_runner.py
ADDED
|
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
SQL Test Runner using Modal (SECONDARY SPONSOR)
|
| 3 |
+
Provides serverless SQL execution for testing queries
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
from typing import Dict, Any
|
| 8 |
+
|
| 9 |
+
# Try to import Modal, but don't fail if not available
|
| 10 |
+
try:
|
| 11 |
+
import modal
|
| 12 |
+
MODAL_AVAILABLE = True
|
| 13 |
+
except ImportError:
|
| 14 |
+
MODAL_AVAILABLE = False
|
| 15 |
+
print("⚠️ Modal not available. Install with: pip install modal")
|
| 16 |
+
|
| 17 |
+
# Try to import DuckDB for local fallback
|
| 18 |
+
try:
|
| 19 |
+
import duckdb
|
| 20 |
+
DUCKDB_AVAILABLE = True
|
| 21 |
+
except ImportError:
|
| 22 |
+
DUCKDB_AVAILABLE = False
|
| 23 |
+
print("⚠️ DuckDB not available for local testing fallback")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class SQLTestRunner:
|
| 27 |
+
"""
|
| 28 |
+
Test runner for SQL queries
|
| 29 |
+
Uses Modal for serverless execution, with DuckDB fallback
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
def __init__(self):
|
| 33 |
+
self.modal_available = MODAL_AVAILABLE
|
| 34 |
+
self.duckdb_available = DUCKDB_AVAILABLE
|
| 35 |
+
|
| 36 |
+
# Initialize Modal app if available
|
| 37 |
+
if self.modal_available:
|
| 38 |
+
try:
|
| 39 |
+
self.app = modal.App("codeflow-sql-tester")
|
| 40 |
+
self._setup_modal()
|
| 41 |
+
except Exception as e:
|
| 42 |
+
print(f"⚠️ Modal setup failed: {e}")
|
| 43 |
+
self.modal_available = False
|
| 44 |
+
|
| 45 |
+
def _setup_modal(self):
|
| 46 |
+
"""Setup Modal function for SQL execution"""
|
| 47 |
+
if not self.modal_available:
|
| 48 |
+
return
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
# Define Modal image with DuckDB
|
| 52 |
+
image = modal.Image.debian_slim().pip_install("duckdb==0.9.2")
|
| 53 |
+
|
| 54 |
+
# Define Modal function
|
| 55 |
+
@self.app.function(image=image, timeout=60)
|
| 56 |
+
def execute_sql_modal(sql: str, sample_data: dict = None) -> dict:
|
| 57 |
+
"""Execute SQL in Modal sandbox"""
|
| 58 |
+
import duckdb
|
| 59 |
+
|
| 60 |
+
try:
|
| 61 |
+
# Create in-memory DuckDB database
|
| 62 |
+
conn = duckdb.connect(':memory:')
|
| 63 |
+
|
| 64 |
+
# If sample data provided, create tables
|
| 65 |
+
if sample_data:
|
| 66 |
+
for table_name, data in sample_data.items():
|
| 67 |
+
conn.execute(f"CREATE TABLE {table_name} AS SELECT * FROM ?", [data])
|
| 68 |
+
|
| 69 |
+
# Execute the SQL
|
| 70 |
+
result = conn.execute(sql).fetchall()
|
| 71 |
+
columns = [desc[0] for desc in conn.description] if conn.description else []
|
| 72 |
+
|
| 73 |
+
conn.close()
|
| 74 |
+
|
| 75 |
+
return {
|
| 76 |
+
"success": True,
|
| 77 |
+
"rows": result[:100], # Limit to 100 rows
|
| 78 |
+
"row_count": len(result),
|
| 79 |
+
"columns": columns,
|
| 80 |
+
"error": None
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
except Exception as e:
|
| 84 |
+
return {
|
| 85 |
+
"success": False,
|
| 86 |
+
"rows": [],
|
| 87 |
+
"row_count": 0,
|
| 88 |
+
"columns": [],
|
| 89 |
+
"error": str(e)
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
self.execute_sql_modal = execute_sql_modal
|
| 93 |
+
|
| 94 |
+
except Exception as e:
|
| 95 |
+
print(f"⚠️ Modal function setup failed: {e}")
|
| 96 |
+
self.modal_available = False
|
| 97 |
+
|
| 98 |
+
def test_sql(self, sql: str, sample_data: Dict = None) -> Dict[str, Any]:
|
| 99 |
+
"""
|
| 100 |
+
Test SQL query execution
|
| 101 |
+
|
| 102 |
+
Args:
|
| 103 |
+
sql: SQL query to test
|
| 104 |
+
sample_data: Optional sample data as dict of table_name -> rows
|
| 105 |
+
|
| 106 |
+
Returns:
|
| 107 |
+
Dict with test results
|
| 108 |
+
"""
|
| 109 |
+
|
| 110 |
+
# Try Modal first if available
|
| 111 |
+
if self.modal_available:
|
| 112 |
+
try:
|
| 113 |
+
result = self.execute_sql_modal.remote(sql, sample_data)
|
| 114 |
+
result["execution_method"] = "Modal (Serverless)"
|
| 115 |
+
return result
|
| 116 |
+
except Exception as e:
|
| 117 |
+
print(f"⚠️ Modal execution failed, falling back to local: {e}")
|
| 118 |
+
|
| 119 |
+
# Fallback to local DuckDB
|
| 120 |
+
if self.duckdb_available:
|
| 121 |
+
return self._test_sql_local(sql, sample_data)
|
| 122 |
+
|
| 123 |
+
# No execution method available
|
| 124 |
+
return {
|
| 125 |
+
"success": False,
|
| 126 |
+
"rows": [],
|
| 127 |
+
"row_count": 0,
|
| 128 |
+
"columns": [],
|
| 129 |
+
"error": "No SQL execution method available. Install Modal or DuckDB.",
|
| 130 |
+
"execution_method": "None"
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
def _test_sql_local(self, sql: str, sample_data: Dict = None) -> Dict[str, Any]:
|
| 134 |
+
"""Execute SQL locally using DuckDB"""
|
| 135 |
+
try:
|
| 136 |
+
conn = duckdb.connect(':memory:')
|
| 137 |
+
|
| 138 |
+
# Create sample tables if provided
|
| 139 |
+
if sample_data:
|
| 140 |
+
for table_name, data in sample_data.items():
|
| 141 |
+
conn.execute(f"CREATE TABLE {table_name} AS SELECT * FROM ?", [data])
|
| 142 |
+
|
| 143 |
+
# Execute SQL
|
| 144 |
+
result = conn.execute(sql).fetchall()
|
| 145 |
+
columns = [desc[0] for desc in conn.description] if conn.description else []
|
| 146 |
+
|
| 147 |
+
conn.close()
|
| 148 |
+
|
| 149 |
+
return {
|
| 150 |
+
"success": True,
|
| 151 |
+
"rows": result[:100], # Limit to 100 rows
|
| 152 |
+
"row_count": len(result),
|
| 153 |
+
"columns": columns,
|
| 154 |
+
"error": None,
|
| 155 |
+
"execution_method": "DuckDB (Local)"
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
except Exception as e:
|
| 159 |
+
return {
|
| 160 |
+
"success": False,
|
| 161 |
+
"rows": [],
|
| 162 |
+
"row_count": 0,
|
| 163 |
+
"columns": [],
|
| 164 |
+
"error": str(e),
|
| 165 |
+
"execution_method": "DuckDB (Local)"
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
def validate_syntax(self, sql: str) -> Dict[str, Any]:
|
| 169 |
+
"""
|
| 170 |
+
Quick syntax validation without execution
|
| 171 |
+
|
| 172 |
+
Args:
|
| 173 |
+
sql: SQL query to validate
|
| 174 |
+
|
| 175 |
+
Returns:
|
| 176 |
+
Dict with validation results
|
| 177 |
+
"""
|
| 178 |
+
if not self.duckdb_available:
|
| 179 |
+
return {
|
| 180 |
+
"valid": None,
|
| 181 |
+
"error": "DuckDB not available for syntax validation"
|
| 182 |
+
}
|
| 183 |
+
|
| 184 |
+
try:
|
| 185 |
+
conn = duckdb.connect(':memory:')
|
| 186 |
+
# Try to prepare the query (doesn't execute, just validates syntax)
|
| 187 |
+
conn.execute(f"EXPLAIN {sql}")
|
| 188 |
+
conn.close()
|
| 189 |
+
|
| 190 |
+
return {
|
| 191 |
+
"valid": True,
|
| 192 |
+
"error": None
|
| 193 |
+
}
|
| 194 |
+
|
| 195 |
+
except Exception as e:
|
| 196 |
+
return {
|
| 197 |
+
"valid": False,
|
| 198 |
+
"error": str(e)
|
| 199 |
+
}
|
| 200 |
+
|
| 201 |
+
def get_execution_plan(self, sql: str) -> Dict[str, Any]:
|
| 202 |
+
"""
|
| 203 |
+
Get query execution plan
|
| 204 |
+
|
| 205 |
+
Args:
|
| 206 |
+
sql: SQL query
|
| 207 |
+
|
| 208 |
+
Returns:
|
| 209 |
+
Dict with execution plan
|
| 210 |
+
"""
|
| 211 |
+
if not self.duckdb_available:
|
| 212 |
+
return {
|
| 213 |
+
"success": False,
|
| 214 |
+
"plan": None,
|
| 215 |
+
"error": "DuckDB not available"
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
try:
|
| 219 |
+
conn = duckdb.connect(':memory:')
|
| 220 |
+
plan = conn.execute(f"EXPLAIN {sql}").fetchall()
|
| 221 |
+
conn.close()
|
| 222 |
+
|
| 223 |
+
return {
|
| 224 |
+
"success": True,
|
| 225 |
+
"plan": "\n".join([str(row[0]) for row in plan]),
|
| 226 |
+
"error": None
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
except Exception as e:
|
| 230 |
+
return {
|
| 231 |
+
"success": False,
|
| 232 |
+
"plan": None,
|
| 233 |
+
"error": str(e)
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
# Singleton instance
|
| 238 |
+
_test_runner = None
|
| 239 |
+
|
| 240 |
+
def get_test_runner() -> SQLTestRunner:
|
| 241 |
+
"""Get or create the global test runner instance"""
|
| 242 |
+
global _test_runner
|
| 243 |
+
if _test_runner is None:
|
| 244 |
+
_test_runner = SQLTestRunner()
|
| 245 |
+
return _test_runner
|