File size: 22,436 Bytes
ba949f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
"""
PipelineForge MCP - Gradio MCP Server for AWS Glue ETL Optimization
MCP 1st Birthday Hackathon Submission - AUTOMATIC DATA FLOW VERSION
"""

import os
import gradio as gr
from dotenv import load_dotenv
import anthropic
from elevenlabs.client import ElevenLabs
import json
from typing import List, Dict, Optional, Tuple
from PIL import Image
import io
import base64

load_dotenv()

# Initialize API clients
anthropic_client = anthropic.Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
elevenlabs_api_key = os.getenv("ELEVENLABS_API_KEY")
elevenlabs_client = ElevenLabs(api_key=elevenlabs_api_key) if elevenlabs_api_key else None

# Initialize RAG (using minimal implementation - no LangChain conflicts)
template_store = None
try:
    from rag_templates_minimal import get_template_store
    template_store = get_template_store()
    if template_store:
        print("βœ… RAG template store initialized")
    else:
        print("⚠️ RAG template store returned None")
except Exception as e:
    print(f"⚠️ RAG disabled: {e}")

# ===========================
# CORE MCP TOOLS
# ===========================

def analyze_screenshot(image: Image.Image, requirements: str) -> Dict:
    """Analyze AWS console screenshot and extract ETL pipeline requirements."""
    try:
        buffered = io.BytesIO()
        image.save(buffered, format="PNG")
        img_str = base64.b64encode(buffered.getvalue()).decode()
        
        message = anthropic_client.messages.create(
            model="claude-3-opus-20240229",
            max_tokens=2048,
            messages=[{
                "role": "user",
                "content": [
                    {"type": "image", "source": {"type": "base64", "media_type": "image/png", "data": img_str}},
                    {"type": "text", "text": f"""Analyze this AWS console screenshot and extract ETL pipeline requirements.

Additional context: {requirements}

Return JSON with: sources, transformations, targets, estimated_volume, frequency"""}
                ]
            }]
        )
        
        response_text = message.content[0].text
        try:
            return json.loads(response_text)
        except:
            return {"analysis": response_text, "sources": [], "transformations": [], "targets": [], "estimated_volume": "50GB", "frequency": "daily"}
    except Exception as e:
        return {"error": f"Screenshot analysis failed: {str(e)}"}


def generate_glue_script(requirements: Dict, optimization_level: str = "balanced") -> Dict:
    """Generate optimized AWS Glue PySpark ETL script."""
    try:
        message = anthropic_client.messages.create(
            model="claude-3-opus-20240229",
            max_tokens=4096,
            messages=[{"role": "user", "content": f"""Generate an optimized AWS Glue PySpark ETL script:

{json.dumps(requirements, indent=2)}

Optimization: {optimization_level}

Include error handling, logging, and AWS Glue best practices."""}]
        )
        
        return {"script": message.content[0].text, "optimization_level": optimization_level}
    except Exception as e:
        return {"error": f"Script generation failed: {str(e)}"}


def simulate_glue_cost(requirements: Dict, worker_type: str = "G.1X", num_workers: int = 2) -> Dict:
    """Simulate AWS Glue job cost."""
    try:
        pricing = {"G.1X": 0.44, "G.2X": 0.88, "G.4X": 1.76, "G.8X": 3.52}
        volume_str = str(requirements.get("estimated_volume", "50GB"))
        
        if "GB" in volume_str:
            volume_gb = float(volume_str.replace("GB", "").strip())
            base_time_minutes = volume_gb * 5
        elif "TB" in volume_str:
            volume_tb = float(volume_str.replace("TB", "").strip())
            base_time_minutes = volume_tb * 1000 * 5
        else:
            base_time_minutes = 30
        
        worker_multiplier = {"G.1X": 1.0, "G.2X": 0.6, "G.4X": 0.4, "G.8X": 0.25}
        estimated_time_hours = (base_time_minutes * worker_multiplier.get(worker_type, 1.0)) / 60
        
        dpu_per_worker = {"G.1X": 1, "G.2X": 2, "G.4X": 4, "G.8X": 8}
        total_dpus = num_workers * dpu_per_worker.get(worker_type, 1)
        hourly_cost = total_dpus * pricing.get(worker_type, 0.44)
        total_cost = hourly_cost * estimated_time_hours
        
        recommendations = []
        if total_cost > 10:
            recommendations.append("Consider G.1X workers for cost optimization")
        if estimated_time_hours > 2:
            recommendations.append("Consider partitioning data")
        
        return {
            "worker_type": worker_type,
            "num_workers": num_workers,
            "estimated_time_hours": round(estimated_time_hours, 2),
            "hourly_cost_usd": round(hourly_cost, 2),
            "total_cost_usd": round(total_cost, 2),
            "total_dpus": total_dpus,
            "recommendations": recommendations
        }
    except Exception as e:
        return {"error": f"Cost simulation failed: {str(e)}"}


def generate_cdk_infrastructure(requirements: Dict, script: str) -> Dict:
    """Generate AWS CDK Python code."""
    try:
        message = anthropic_client.messages.create(
            model="claude-3-opus-20240229",
            max_tokens=4096,
            messages=[{"role": "user", "content": f"""Generate AWS CDK Python code:

Requirements: {json.dumps(requirements, indent=2)}
Script: {script[:500]}...

Include Glue job, IAM, S3, CloudWatch, EventBridge."""}]
        )
        
        return {"cdk_code": message.content[0].text}
    except Exception as e:
        return {"error": f"CDK generation failed: {str(e)}"}


def generate_voice_explanation(content: str) -> str:
    """Generate voice narration using ElevenLabs TTS."""
    try:
        if not elevenlabs_client:
            return "ElevenLabs API key not configured"
        
        audio_generator = elevenlabs_client.text_to_speech.convert(
            text=content[:1000],
            voice_id="21m00Tcm4TlvDq8ikWAM",
            model_id="eleven_monolingual_v1"
        )
        
        output_path = "narration.mp3"
        with open(output_path, "wb") as f:
            for chunk in audio_generator:
                f.write(chunk)
        
        return output_path
    except Exception as e:
        return f"Voice generation failed: {str(e)}"


def find_similar_pipelines(query: str, top_k: int = 3) -> Dict:
    """Find similar ETL pipeline templates using RAG."""
    try:
        if template_store is None:
            return {"error": "Template store not initialized"}
        
        similar = template_store.find_similar(query, top_k)
        return {"query": query, "similar_templates": similar, "count": len(similar)}
    except Exception as e:
        return {"error": f"Template search failed: {str(e)}"}


# ===========================
# GRADIO UI - AUTOMATIC DATA FLOW
# ===========================

def create_ui():
    """Create Gradio interface with automatic data flow and colorful theme"""
    
    # Custom CSS for colorful, modern theme
    custom_css = """
    /* Main container gradient background */
    .gradio-container {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    }
    
    /* Header styling */
    .main-header {
        background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
        padding: 2rem;
        border-radius: 15px;
        margin-bottom: 2rem;
        box-shadow: 0 8px 32px rgba(31, 38, 135, 0.37);
        backdrop-filter: blur(4px);
        border: 1px solid rgba(255, 255, 255, 0.18);
    }
    
    /* Tab styling */
    .tab-nav button {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white !important;
        border: none;
        border-radius: 10px 10px 0 0;
        padding: 12px 24px;
        margin: 0 4px;
        transition: all 0.3s ease;
        font-weight: 600;
    }
    
    .tab-nav button:hover {
        transform: translateY(-3px);
        box-shadow: 0 5px 15px rgba(102, 126, 234, 0.4);
    }
    
    .tab-nav button.selected {
        background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
        box-shadow: 0 5px 20px rgba(245, 87, 108, 0.5);
    }
    
    /* Button styling */
    .primary-button {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
        border: none !important;
        color: white !important;
        padding: 14px 32px !important;
        border-radius: 12px !important;
        font-size: 16px !important;
        font-weight: 600 !important;
        transition: all 0.3s ease !important;
        box-shadow: 0 6px 20px rgba(102, 126, 234, 0.4) !important;
    }
    
    .primary-button:hover {
        transform: translateY(-2px) !important;
        box-shadow: 0 8px 30px rgba(102, 126, 234, 0.6) !important;
    }
    
    /* Card containers */
    .gr-box, .gr-form, .gr-panel {
        background: rgba(255, 255, 255, 0.95) !important;
        border-radius: 15px !important;
        padding: 1.5rem !important;
        box-shadow: 0 8px 32px rgba(31, 38, 135, 0.15) !important;
        backdrop-filter: blur(4px) !important;
        border: 1px solid rgba(255, 255, 255, 0.3) !important;
    }
    
    /* Input fields */
    input, textarea, select {
        border: 2px solid #e0e7ff !important;
        border-radius: 10px !important;
        padding: 10px !important;
        transition: all 0.3s ease !important;
        background: white !important;
    }
    
    input:focus, textarea:focus, select:focus {
        border-color: #667eea !important;
        box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
    }
    
    /* Code blocks */
    .code-container {
        background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%) !important;
        border-radius: 12px !important;
        padding: 1rem !important;
        box-shadow: 0 8px 32px rgba(30, 60, 114, 0.3) !important;
    }
    
    /* JSON output */
    .json-container {
        background: linear-gradient(135deg, #134e5e 0%, #71b280 100%) !important;
        border-radius: 12px !important;
        padding: 1rem !important;
        color: white !important;
    }
    
    /* Success indicators */
    .success-mark {
        color: #10b981;
        font-size: 1.2em;
        font-weight: bold;
    }
    
    /* Step numbers */
    .step-number {
        background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%);
        color: white;
        border-radius: 50%;
        width: 40px;
        height: 40px;
        display: inline-flex;
        align-items: center;
        justify-content: center;
        font-weight: bold;
        margin-right: 10px;
    }
    
    /* Footer */
    .footer {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        padding: 1.5rem;
        border-radius: 15px;
        margin-top: 2rem;
        color: white;
        text-align: center;
        box-shadow: 0 8px 32px rgba(102, 126, 234, 0.3);
    }
    
    /* Animations */
    @keyframes pulse {
        0%, 100% { opacity: 1; }
        50% { opacity: 0.8; }
    }
    
    .animated-icon {
        animation: pulse 2s ease-in-out infinite;
    }
    """
    
    with gr.Blocks(title="PipelineForge MCP") as demo:
        # Inject custom CSS
        gr.HTML(f"""
        <style>
        {custom_css}
        </style>
        """)
        
        gr.HTML("""
        <div class="main-header">
            <h1 style="color: white; margin: 0; font-size: 3em; text-shadow: 2px 2px 4px rgba(0,0,0,0.2);">
                πŸ”§ PipelineForge MCP
            </h1>
            <p style="color: rgba(255,255,255,0.95); font-size: 1.3em; margin-top: 0.5rem;">
                ⚑ AWS Glue ETL Optimizer - Automatic Workflow ⚑
            </p>
            <p style="color: rgba(255,255,255,0.9); font-size: 1.1em; margin-top: 1rem;">
                🎯 Each step automatically uses data from previous steps - no copy/paste needed!
            </p>
        </div>
        """)
        
        # Shared state
        pipeline_state = gr.State({"requirements": {}, "script": "", "cost": {}, "cdk": ""})
        
        with gr.Tabs() as tabs:
            # Tab 1: Screenshot Analysis
            with gr.Tab("1️⃣ Start: Analyze Screenshot") as tab1:
                gr.Markdown("### Extract requirements from AWS console image")
                
                with gr.Row():
                    with gr.Column():
                        img_input = gr.Image(type="pil", label="Upload Screenshot")
                        req_input = gr.Textbox(label="Description", placeholder="Daily sales ETL", lines=2)
                        analyze_btn = gr.Button("πŸ” Analyze", variant="primary", size="lg")
                    with gr.Column():
                        analysis_out = gr.JSON(label="βœ… Requirements Extracted")
                        gr.Markdown("**Next:** Go to Script Generation tab β†’")
                
                def analyze_and_store(img, req, state):
                    result = analyze_screenshot(img, req) if img else {"estimated_volume": "50GB", "sources": [], "transformations": [], "targets": []}
                    state["requirements"] = result
                    return result, state
                
                analyze_btn.click(analyze_and_store, [img_input, req_input, pipeline_state], [analysis_out, pipeline_state])
            
            # Tab 2: Script Generation
            with gr.Tab("2️⃣ Generate Script") as tab2:
                gr.Markdown("### AI generates PySpark code automatically using requirements from Tab 1")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("**Using requirements from Screenshot Analysis** βœ…")
                        opt_level = gr.Radio(["cost", "performance", "balanced"], value="balanced", label="Optimization")
                        gen_script_btn = gr.Button("πŸš€ Generate Script", variant="primary", size="lg")
                    with gr.Column():
                        script_out = gr.Code(label="βœ… Generated PySpark Script", language="python", lines=20)
                        gr.Markdown("**Next:** Go to Cost Simulation tab β†’")
                
                def generate_and_store(opt, state):
                    reqs = state.get("requirements", {"estimated_volume": "50GB"})
                    result = generate_glue_script(reqs, opt)
                    script = result.get("script", "")
                    state["script"] = script
                    return script, state
                
                gen_script_btn.click(generate_and_store, [opt_level, pipeline_state], [script_out, pipeline_state])
            
            # Tab 3: Cost Simulation
            with gr.Tab("3️⃣ Simulate Cost") as tab3:
                gr.Markdown("### Calculate AWS Glue costs automatically using requirements from Tab 1")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("**Using requirements from Screenshot Analysis** βœ…")
                        worker_type = gr.Dropdown(["G.1X", "G.2X", "G.4X", "G.8X"], value="G.1X", label="Worker Type")
                        num_workers = gr.Slider(2, 50, 5, step=1, label="Workers")
                        cost_btn = gr.Button("πŸ’΅ Simulate Cost", variant="primary", size="lg")
                    with gr.Column():
                        cost_out = gr.JSON(label="βœ… Cost Breakdown")
                        gr.Markdown("**Next:** Go to CDK Infrastructure tab β†’")
                
                def simulate_and_store(worker, workers, state):
                    reqs = state.get("requirements", {"estimated_volume": "50GB"})
                    result = simulate_glue_cost(reqs, worker, workers)
                    state["cost"] = result
                    return result, state
                
                cost_btn.click(simulate_and_store, [worker_type, num_workers, pipeline_state], [cost_out, pipeline_state])
            
            # Tab 4: CDK Infrastructure
            with gr.Tab("4️⃣ Generate CDK") as tab4:
                gr.Markdown("### Generate deployment code automatically using requirements + script from previous tabs")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("**Using requirements from Tab 1 + script from Tab 2** βœ…")
                        cdk_btn = gr.Button("🏭 Generate CDK", variant="primary", size="lg")
                    with gr.Column():
                        cdk_out = gr.Code(label="βœ… AWS CDK Python Code", language="python", lines=20)
                        gr.Markdown("**Next:** Go to Voice Summary tab β†’")
                
                def generate_cdk_and_store(state):
                    reqs = state.get("requirements", {})
                    script = state.get("script", "")
                    result = generate_cdk_infrastructure(reqs, script)
                    cdk = result.get("cdk_code", "")
                    state["cdk"] = cdk
                    return cdk, state
                
                cdk_btn.click(generate_cdk_and_store, [pipeline_state], [cdk_out, pipeline_state])
            
            # Tab 5: Voice Summary
            with gr.Tab("5️⃣ Voice Summary") as tab5:
                gr.Markdown("### Automatic voice narration of your complete pipeline")
                
                with gr.Row():
                    with gr.Column():
                        gr.Markdown("**Automatically summarizes ALL previous tabs** βœ…")
                        voice_btn = gr.Button("🎀 Generate Voice Summary", variant="primary", size="lg")
                        summary_text = gr.Textbox(label="Summary (auto-generated)", lines=10)
                    with gr.Column():
                        audio_out = gr.Audio(label="βœ… Voice Narration")
                        status_out = gr.Textbox(label="Status")
                
                def generate_voice_summary(state):
                    parts = []
                    
                    reqs = state.get("requirements", {})
                    if reqs:
                        volume = reqs.get("estimated_volume", "unknown")
                        sources = ", ".join(reqs.get("sources", []))[:50]
                        parts.append(f"This ETL pipeline processes {volume} of data")
                        if sources:
                            parts.append(f"from {sources}")
                    
                    cost = state.get("cost", {})
                    if cost and "total_cost_usd" in cost:
                        cost_val = cost["total_cost_usd"]
                        time_val = cost["estimated_time_hours"]
                        workers = cost["num_workers"]
                        parts.append(f"using {workers} workers. It costs ${cost_val:.2f} per run, taking {time_val:.1f} hours.")
                    
                    if state.get("script"):
                        parts.append("Complete PySpark script has been generated with AWS Glue best practices.")
                    
                    if state.get("cdk"):
                        parts.append("Infrastructure code is ready for deployment with CDK.")
                    
                    summary = " ".join(parts) if parts else "Complete the previous tabs first to generate summary."
                    
                    audio_path = generate_voice_explanation(summary)
                    status = "βœ… Voice generated!" if not audio_path.startswith("Voice generation failed") else "❌ " + audio_path
                    
                    return summary, audio_path, status
                
                voice_btn.click(generate_voice_summary, [pipeline_state], [summary_text, audio_out, status_out])
            
            # Tab 6: Template Library
            with gr.Tab("6️⃣ Find Similar Templates") as tab6:
                gr.Markdown("### Search ETL template library with RAG")
                
                with gr.Row():
                    with gr.Column():
                        # Dropdown with pre-defined queries
                        template_dropdown = gr.Dropdown(
                            choices=[
                                "Daily sales aggregation with customer join",
                                "Real-time CDC processing from DynamoDB",
                                "Data quality validation with Great Expectations",
                                "Multi-source data lake integration",
                                "Incremental ETL with job bookmarks",
                                "Custom query..."
                            ],
                            label="Select Template Type",
                            value="Daily sales aggregation with customer join"
                        )
                        custom_query = gr.Textbox(label="Or enter custom query", placeholder="Describe your ETL needs", lines=2)
                        search_btn = gr.Button("πŸ” Find Templates", variant="primary")
                    with gr.Column():
                        template_out = gr.JSON(label="βœ… Similar Templates")
                
                def search_templates(dropdown_val, custom_val):
                    query = custom_val if custom_val else dropdown_val
                    return find_similar_pipelines(query, 3)
                
                search_btn.click(search_templates, [template_dropdown, custom_query], template_out)
        
        gr.HTML("""
        <div class="footer">
            <h2 style="margin: 0; color: white; text-shadow: 2px 2px 4px rgba(0,0,0,0.2);">
                πŸ† MCP 1st Birthday Hackathon
            </h2>
            <p style="margin-top: 0.5rem; font-size: 1.2em; color: rgba(255,255,255,0.95);">
                ✨ All 6 features with automatic data flow ✨
            </p>
            <p style="margin-top: 0.5rem; color: rgba(255,255,255,0.9);">
                🎯 ChromaDB RAG | ⚑ Modal Testing | 🧠 Claude AI | πŸŽ™οΈ ElevenLabs TTS
            </p>
        </div>
        """)
    
    return demo


if __name__ == "__main__":
    demo = create_ui()
    demo.launch(
        server_name=os.getenv("GRADIO_SERVER_NAME", "127.0.0.1"),
        server_port=int(os.getenv("GRADIO_SERVER_PORT", "7860")),
        share=False
    )