File size: 37,117 Bytes
c0944ea 2b3c487 c0944ea 2b3c487 c0944ea 2b3c487 c0944ea 2b3c487 f7ed90a 2b3c487 6f143d4 2b3c487 6f143d4 2b3c487 6f143d4 2b3c487 6f143d4 2b3c487 6f143d4 2b3c487 6f143d4 2b3c487 6f143d4 2b3c487 6f143d4 2b3c487 6f143d4 3768f8b 2b3c487 e6355d4 bab4f23 e6355d4 bab4f23 e6355d4 bab4f23 1b22ad2 c0944ea f7ed90a e6355d4 c0944ea 2b3c487 e6355d4 2b3c487 c0944ea 2b3c487 e6355d4 2b3c487 e6355d4 f7ed90a e6355d4 f7ed90a 2b3c487 e6355d4 bab4f23 2b3c487 e6355d4 6f143d4 2b3c487 6f143d4 e6355d4 2b3c487 6f143d4 c0944ea 2b3c487 e6355d4 2b3c487 c0944ea 2b3c487 f7ed90a 1b22ad2 c0944ea b6b4ca3 f388d19 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 6faaeef b6b4ca3 f388d19 b6b4ca3 6faaeef ffedd45 6faaeef de891dc 6faaeef f388d19 6faaeef ffedd45 6faaeef b6b4ca3 ffedd45 b6b4ca3 ffedd45 f388d19 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 6faaeef ffedd45 b6b4ca3 ffedd45 6faaeef b6b4ca3 ffedd45 b6b4ca3 f388d19 b6b4ca3 ffedd45 f388d19 ffedd45 b6b4ca3 ffedd45 b6b4ca3 f388d19 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 2b3c487 6f143d4 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 ffedd45 b6b4ca3 f388d19 b6b4ca3 2b3c487 e9ea9e9 c0944ea b6b4ca3 c0944ea e9ea9e9 f7ed90a ffedd45 2b3c487 b6b4ca3 c0944ea 6faaeef de891dc 6faaeef de891dc 6faaeef c0944ea 6faaeef 2b3c487 6f143d4 6faaeef 2b3c487 6faaeef c0944ea 6faaeef 5aeba4c 6faaeef 2b3c487 5aeba4c 2b3c487 6faaeef c0944ea 2b3c487 c0944ea b6b4ca3 f7ed90a b6b4ca3 f7ed90a b6b4ca3 f7ed90a b6b4ca3 f7ed90a b6b4ca3 c0944ea bab4f23 c0944ea b6b4ca3 c0944ea 1b22ad2 c0944ea b6b4ca3 2b3c487 b6b4ca3 c0944ea 1b22ad2 b6b4ca3 1b22ad2 b6b4ca3 1b22ad2 2b3c487 f7ed90a de891dc f7ed90a c0944ea 2b3c487 c0944ea f7ed90a 3768f8b c0944ea e6355d4 c0944ea 2b3c487 c0944ea f7ed90a e6355d4 c0944ea 1b22ad2 c0944ea 3768f8b e6355d4 c0944ea 2b3c487 c0944ea f7ed90a 3768f8b 1b22ad2 2b3c487 c0944ea f7ed90a 3768f8b 1b22ad2 2b3c487 c0944ea 2b3c487 c0944ea 2b3c487 c0944ea 1b22ad2 c0944ea f7ed90a 2b3c487 c0944ea 1b22ad2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 |
"""
Second Opinion AI Agent - HuggingFace Spaces Version
Agentic framework that uses MCP Server tools for deep analysis
Supports multiple LLM providers: Anthropic, OpenAI, and Google Gemini
"""
import gradio as gr
import os
from typing import List, Dict, Tuple, Optional, Callable, Any
import json
from datetime import datetime
import re
# Import MCP server to access tools directly
from mcp_server import (
analyze_assumptions,
detect_cognitive_biases,
generate_alternatives,
perform_premortem_analysis,
identify_stakeholders_and_impacts,
second_order_thinking,
opportunity_cost_analysis,
red_team_analysis
)
# =============================================================================
# MCP TOOLS REGISTRY - Direct access to MCP server tools
# =============================================================================
MCP_TOOLS = {
"analyze_assumptions": {
"function": analyze_assumptions,
"description": "Analyzes an idea to identify hidden assumptions and unstated premises. Use this when you need to uncover what's being taken for granted.",
"parameters": {
"idea": "The idea or decision to analyze (required)",
"context": "Additional context or background information (optional)"
}
},
"detect_cognitive_biases": {
"function": detect_cognitive_biases,
"description": "Detects potential cognitive biases in reasoning and decision-making. Use this to identify confirmation bias, anchoring, sunk cost fallacy, etc.",
"parameters": {
"idea": "The idea or decision being proposed (required)",
"reasoning": "The reasoning or justification provided (optional)"
}
},
"generate_alternatives": {
"function": generate_alternatives,
"description": "Generates alternative approaches and solutions to consider. Use this to explore other options beyond the proposed idea.",
"parameters": {
"idea": "The original idea or approach (required)",
"constraints": "Known constraints or requirements (optional)",
"num_alternatives": "Number of alternatives to generate, 1-10 (optional, default 5)"
}
},
"perform_premortem_analysis": {
"function": perform_premortem_analysis,
"description": "Performs a pre-mortem analysis: imagine the idea failed and identify why. Use this to anticipate failure modes.",
"parameters": {
"idea": "The idea or project to analyze (required)",
"timeframe": "When to imagine the failure, e.g. '6 months', '1 year' (optional)"
}
},
"identify_stakeholders_and_impacts": {
"function": identify_stakeholders_and_impacts,
"description": "Identifies all stakeholders and analyzes potential impacts on each group. Use this to understand who is affected.",
"parameters": {
"idea": "The idea or decision to analyze (required)",
"organization_context": "Context about the organization or situation (optional)"
}
},
"second_order_thinking": {
"function": second_order_thinking,
"description": "Analyzes second and third-order consequences of an idea. Use this to explore cascading effects and long-term implications.",
"parameters": {
"idea": "The idea or decision to analyze (required)",
"time_horizon": "Time period to consider, e.g. '2-5 years' (optional)"
}
},
"opportunity_cost_analysis": {
"function": opportunity_cost_analysis,
"description": "Analyzes opportunity costs: what you give up by choosing this path. Use this to understand trade-offs.",
"parameters": {
"idea": "The idea or decision being considered (required)",
"resources": "Available resources like time, money, people (optional)",
"alternatives": "Other options being considered (optional)"
}
},
"red_team_analysis": {
"function": red_team_analysis,
"description": "Performs red team analysis: actively tries to break or exploit the idea. Use this to find vulnerabilities.",
"parameters": {
"idea": "The idea, system, or plan to attack (required)",
"attack_surface": "Known vulnerabilities or areas of concern (optional)"
}
}
}
def get_tools_description() -> str:
"""Generate a formatted description of all available tools for the agent"""
tools_desc = []
for name, tool in MCP_TOOLS.items():
params = ", ".join([f"{k}: {v}" for k, v in tool["parameters"].items()])
tools_desc.append(f"- {name}({params})\n Description: {tool['description']}")
return "\n\n".join(tools_desc)
def call_mcp_tool(tool_name: str, **kwargs) -> str:
"""Call an MCP tool by name with given arguments"""
if tool_name not in MCP_TOOLS:
return json.dumps({"error": f"Unknown tool: {tool_name}"})
try:
tool_func = MCP_TOOLS[tool_name]["function"]
result = tool_func(**kwargs)
return result
except Exception as e:
return json.dumps({"error": f"Tool execution failed: {str(e)}"})
# =============================================================================
# AGENT SYSTEM PROMPTS
# =============================================================================
AGENT_SYSTEM_PROMPT = """You are a Second Opinion AI Agent - an expert critical thinking assistant that helps people challenge their ideas and decisions.
You have access to the following analysis tools from the MCP server:
{tools}
## HOW TO USE TOOLS
When you need to use a tool, respond with a tool call in this EXACT format:
<tool_call>
{{"tool": "tool_name", "arguments": {{"param1": "value1", "param2": "value2"}}}}
</tool_call>
You can call multiple tools in sequence. After each tool call, you'll receive the results, and you can then call another tool or provide your final analysis.
## YOUR APPROACH
1. **Analyze the Request**: First understand what the user is asking for help with
2. **Select Appropriate Tools**: Choose 2-4 tools that would provide the most valuable analysis
3. **Call Tools**: Execute tool calls one at a time
4. **Synthesize Insights**: After gathering tool outputs, synthesize them into a cohesive, actionable analysis
## RESPONSE GUIDELINES
- Start by briefly acknowledging the user's idea/decision
- Use tools to gather structured analysis
- After tool results, provide a SYNTHESIZED analysis that:
- Highlights the most critical insights
- Identifies key blind spots or risks
- Offers specific, actionable recommendations
- Maintains a constructive but challenging tone
Remember: Your goal is to help the user see what they might be missing, not to simply validate or criticize their thinking.
When you have gathered enough insights and are ready to provide your final analysis, respond WITHOUT any tool calls."""
PERSONA_INSTRUCTIONS = {
"Devil's Advocate": """
## PERSONA: DEVIL'S ADVOCATE
Your role is to challenge every assumption and argue the opposite perspective.
Focus on: Counter-arguments, hidden flaws, risks, and alternative viewpoints.
Recommended tools: detect_cognitive_biases, analyze_assumptions, red_team_analysis""",
"Strategic Thinker": """
## PERSONA: STRATEGIC THINKER
Your role is to analyze long-term consequences and strategic implications.
Focus on: Second-order effects, opportunity costs, timing, and strategic gaps.
Recommended tools: second_order_thinking, opportunity_cost_analysis, perform_premortem_analysis""",
"Pragmatic Realist": """
## PERSONA: PRAGMATIC REALIST
Your role is to ground ideas in practical reality and implementation challenges.
Focus on: Feasibility, resource requirements, execution gaps, and real-world constraints.
Recommended tools: perform_premortem_analysis, identify_stakeholders_and_impacts, generate_alternatives""",
"Systems Thinker": """
## PERSONA: SYSTEMS THINKER
Your role is to examine interconnections and systemic effects.
Focus on: Feedback loops, unintended consequences, stakeholder impacts, and leverage points.
Recommended tools: second_order_thinking, identify_stakeholders_and_impacts, red_team_analysis""",
"Comprehensive Analyst": """
## PERSONA: COMPREHENSIVE ANALYST
Your role is to provide thorough multi-dimensional analysis.
Focus on: All aspects - assumptions, biases, consequences, stakeholders, and alternatives.
Recommended tools: Use ALL available tools for comprehensive coverage"""
}
# =============================================================================
# LLM PROVIDER CONFIGURATIONS
# =============================================================================
LLM_PROVIDERS = {
"Anthropic (Claude)": {
"models": ["claude-sonnet-4-5-20250929", "claude-haiku-4-5-20251001"],
"default_model": "claude-sonnet-4-5-20250929",
"env_key": "ANTHROPIC_API_KEY"
},
"OpenAI (GPT)": {
"models": ["gpt-4.1", "gpt-4o", "gpt-4.1-mini"],
"default_model": "gpt-4o",
"env_key": "OPENAI_API_KEY"
},
"Google (Gemini)": {
"models": ["gemini-2.5-flash", "gemini-2.5-pro", "gemini-2.5-flash-lite"],
"default_model": "gemini-2.5-flash",
"env_key": "GOOGLE_API_KEY"
}
}
def get_client(provider: str, api_key: str):
"""Initialize and return the appropriate client based on provider"""
if not api_key:
return None, "API key is required"
try:
if provider == "Anthropic (Claude)":
import anthropic
return anthropic.Anthropic(api_key=api_key), None
elif provider == "OpenAI (GPT)":
from openai import OpenAI
return OpenAI(api_key=api_key), None
elif provider == "Google (Gemini)":
import google.generativeai as genai
genai.configure(api_key=api_key)
return genai, None
else:
return None, f"Unknown provider: {provider}"
except Exception as e:
return None, f"Failed to initialize client: {str(e)}"
# =============================================================================
# LLM CALL FUNCTIONS
# =============================================================================
def call_anthropic(client, model: str, system_prompt: str, messages: List[Dict],
temperature: float, max_tokens: int) -> str:
"""Call Anthropic API"""
response = client.messages.create(
model=model,
max_tokens=max_tokens,
temperature=temperature,
system=system_prompt,
messages=messages
)
return response.content[0].text
def call_openai(client, model: str, system_prompt: str, messages: List[Dict],
temperature: float, max_tokens: int) -> str:
"""Call OpenAI API"""
openai_messages = [{"role": "system", "content": system_prompt}]
for msg in messages:
openai_messages.append({
"role": msg["role"],
"content": msg["content"]
})
response = client.chat.completions.create(
model=model,
messages=openai_messages,
temperature=temperature,
max_tokens=max_tokens
)
return response.choices[0].message.content
def call_gemini(genai, model: str, system_prompt: str, messages: List[Dict],
temperature: float, max_tokens: int) -> str:
"""Call Google Gemini API"""
generation_config = {
"temperature": temperature,
"max_output_tokens": max_tokens,
}
model_instance = genai.GenerativeModel(
model_name=model,
system_instruction=system_prompt,
generation_config=generation_config
)
contents = []
for msg in messages:
role = "user" if msg["role"] == "user" else "model"
contents.append({
"role": role,
"parts": [{"text": msg["content"]}]
})
response = model_instance.generate_content(contents)
return response.text
def call_llm(client, provider: str, model: str, system_prompt: str,
messages: List[Dict], temperature: float, max_tokens: int) -> str:
"""Universal LLM call function"""
if provider == "Anthropic (Claude)":
return call_anthropic(client, model, system_prompt, messages, temperature, max_tokens)
elif provider == "OpenAI (GPT)":
return call_openai(client, model, system_prompt, messages, temperature, max_tokens)
elif provider == "Google (Gemini)":
return call_gemini(client, model, system_prompt, messages, temperature, max_tokens)
else:
raise ValueError(f"Unknown provider: {provider}")
# =============================================================================
# AGENT EXECUTION ENGINE
# =============================================================================
def parse_tool_calls(response: str) -> List[Dict]:
"""Extract tool calls from agent response"""
tool_calls = []
pattern = r'<tool_call>\s*(\{.*?\})\s*</tool_call>'
matches = re.findall(pattern, response, re.DOTALL)
for match in matches:
try:
tool_call = json.loads(match)
if "tool" in tool_call:
tool_calls.append(tool_call)
except json.JSONDecodeError:
continue
return tool_calls
def format_tool_result(tool_name: str, result: str) -> str:
"""Format tool result for inclusion in conversation"""
try:
parsed = json.loads(result)
formatted = json.dumps(parsed, indent=2)
except:
formatted = result
return f"""<tool_result tool="{tool_name}">
{formatted}
</tool_result>"""
def run_agent(
user_input: str,
persona: str,
client,
provider: str,
model: str,
conversation_history: List[Dict],
temperature: float = 0.7,
max_tokens: int = 4000,
max_iterations: int = 6
) -> Tuple[str, List[Dict], List[str]]:
"""
Run the agentic loop with MCP tool calling
Returns:
Tuple of (final_response, updated_conversation_history, tool_execution_log)
"""
# Build system prompt with tools and persona
tools_desc = get_tools_description()
system_prompt = AGENT_SYSTEM_PROMPT.format(tools=tools_desc)
system_prompt += "\n\n" + PERSONA_INSTRUCTIONS.get(persona, PERSONA_INSTRUCTIONS["Comprehensive Analyst"])
# Start with conversation history and add new user message
agent_messages = list(conversation_history)
agent_messages.append({"role": "user", "content": user_input})
tool_execution_log = []
iteration = 0
final_response = ""
while iteration < max_iterations:
iteration += 1
# Call LLM
try:
response = call_llm(
client, provider, model, system_prompt,
agent_messages, temperature, max_tokens
)
except Exception as e:
return f"β οΈ Error calling {provider} API: {str(e)}", conversation_history, tool_execution_log
# Check for tool calls
tool_calls = parse_tool_calls(response)
if not tool_calls:
# No tool calls - this is the final response
final_response = response
break
# Execute tool calls
tool_results = []
for tc in tool_calls:
tool_name = tc.get("tool", "")
arguments = tc.get("arguments", {})
tool_execution_log.append(f"π§ Calling: {tool_name}")
# Execute the MCP tool
result = call_mcp_tool(tool_name, **arguments)
tool_results.append(format_tool_result(tool_name, result))
tool_execution_log.append(f"β {tool_name} completed")
# Add assistant response and tool results to messages
agent_messages.append({"role": "assistant", "content": response})
agent_messages.append({
"role": "user",
"content": "Tool execution results:\n\n" + "\n\n".join(tool_results) +
"\n\nPlease continue your analysis. Call more tools if needed, or provide your final synthesized analysis."
})
if not final_response:
final_response = "β οΈ Agent reached maximum iterations without completing analysis."
# Clean the final response - remove any remaining tool call tags
final_response = re.sub(r'<tool_call>.*?</tool_call>', '', final_response, flags=re.DOTALL).strip()
# Update conversation history with user input and final response only
updated_history = conversation_history + [
{"role": "user", "content": user_input},
{"role": "assistant", "content": final_response}
]
return final_response, updated_history, tool_execution_log
# =============================================================================
# MAIN INTERFACE FUNCTION
# =============================================================================
def normalize_history(history) -> List[Dict]:
"""
Convert history to messages format regardless of input format.
Handles: None, empty list, tuples format, messages format
"""
if history is None or history == []:
return []
# Check if it's already in messages format
if isinstance(history, list) and len(history) > 0:
first_item = history[0]
# Messages format: [{"role": "...", "content": "..."}, ...]
if isinstance(first_item, dict) and "role" in first_item:
return [msg for msg in history if isinstance(msg, dict) and "role" in msg and "content" in msg]
# Tuple format: [("user msg", "assistant msg"), ...]
if isinstance(first_item, (tuple, list)) and len(first_item) == 2:
messages = []
for item in history:
if isinstance(item, (tuple, list)) and len(item) == 2:
user_msg, assistant_msg = item
if user_msg:
messages.append({"role": "user", "content": str(user_msg)})
if assistant_msg:
messages.append({"role": "assistant", "content": str(assistant_msg)})
return messages
return []
def format_history_for_gradio(messages: List[Dict]) -> List[Dict]:
"""
Format messages for Gradio Chatbot (messages format).
Ensures all messages have proper structure.
"""
result = []
for msg in messages:
if isinstance(msg, dict) and "role" in msg and "content" in msg:
result.append({
"role": str(msg["role"]),
"content": str(msg["content"]) if msg["content"] else ""
})
return result
def get_second_opinion(
user_input: str,
persona: str,
provider: str,
model: str,
api_key: str,
chatbot_history, # Can be any format
temperature: float = 0.7,
max_tokens: int = 4000
) -> Tuple[str, List[Dict], str]:
"""
Get a second opinion from the AI agent using MCP tools
Returns:
Tuple of (response, updated_history, tool_log_display)
"""
# Normalize history to messages format
history = normalize_history(chatbot_history)
if not api_key:
env_key = LLM_PROVIDERS.get(provider, {}).get("env_key", "")
api_key = os.environ.get(env_key, "")
if not api_key:
error_msg = f"β οΈ API key required. Please enter your {provider} API key or set {env_key} in HuggingFace Spaces Settings."
return error_msg, format_history_for_gradio(history), ""
client, error = get_client(provider, api_key)
if error:
return f"β οΈ Error: {error}", format_history_for_gradio(history), ""
# Run the agent
response, updated_history, tool_log = run_agent(
user_input=user_input,
persona=persona,
client=client,
provider=provider,
model=model,
conversation_history=history,
temperature=temperature,
max_tokens=max_tokens
)
# Format tool log for display
tool_log_display = "\n".join(tool_log) if tool_log else "No tools called"
return response, format_history_for_gradio(updated_history), tool_log_display
# =============================================================================
# GRADIO INTERFACE
# =============================================================================
def create_interface():
"""Create the Gradio interface"""
custom_css = """
<style>
.gradio-container {
max-width: 1400px !important;
margin: auto !important;
background: linear-gradient(135deg, #f8fafc 0%, #eef2f7 100%) !important;
min-height: 100vh;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif !important;
}
h1 {
color: #1e293b !important;
font-weight: 700 !important;
text-align: center !important;
font-size: 2.2rem !important;
margin-bottom: 0.5rem !important;
}
h3 {
color: #475569 !important;
font-weight: 600 !important;
padding-bottom: 8px;
margin-top: 0 !important;
margin-bottom: 12px !important;
}
.block, .container, .panel, .wrap, .form {
background: transparent !important;
border: none !important;
box-shadow: none !important;
}
.main-section {
background: #ffffff !important;
border: 1px solid #e2e8f0 !important;
border-radius: 12px !important;
padding: 20px 24px !important;
margin-bottom: 16px !important;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.04) !important;
}
.main-section > .block, .main-section > .form {
background: transparent !important;
border: none !important;
box-shadow: none !important;
padding: 0 !important;
}
.chatbot {
background: #ffffff !important;
border: 1px solid #e2e8f0 !important;
border-radius: 12px !important;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.04) !important;
}
.message {
border-radius: 10px !important;
padding: 12px 16px !important;
}
select, input[type="text"], input[type="password"], textarea {
background: #ffffff !important;
border: 1px solid #e2e8f0 !important;
color: #1e293b !important;
border-radius: 8px !important;
transition: all 0.2s ease !important;
}
select:focus, input[type="text"]:focus, input[type="password"]:focus, textarea:focus {
border-color: #6366f1 !important;
box-shadow: 0 0 0 3px rgba(99, 102, 241, 0.1) !important;
outline: none !important;
}
button {
transition: all 0.2s ease !important;
border-radius: 8px !important;
background: #ffffff !important;
border: 1px solid #e2e8f0 !important;
color: #475569 !important;
font-weight: 500 !important;
}
button:hover {
background: #f8fafc !important;
border-color: #cbd5e1 !important;
}
button.primary, button[class*="primary"] {
background: #6366f1 !important;
border: none !important;
color: white !important;
box-shadow: 0 2px 6px rgba(99, 102, 241, 0.3) !important;
}
button.primary:hover, button[class*="primary"]:hover {
background: #4f46e5 !important;
box-shadow: 0 4px 12px rgba(99, 102, 241, 0.4) !important;
}
button.secondary, button[class*="secondary"] {
background: #f1f5f9 !important;
color: #475569 !important;
}
.accordion, details {
background: transparent !important;
border: none !important;
}
summary {
color: #475569 !important;
font-weight: 500 !important;
}
input[type="range"] {
accent-color: #6366f1 !important;
}
::-webkit-scrollbar {
width: 6px;
height: 6px;
}
::-webkit-scrollbar-track {
background: #f1f5f9;
border-radius: 3px;
}
::-webkit-scrollbar-thumb {
background: #cbd5e1;
border-radius: 3px;
}
::-webkit-scrollbar-thumb:hover {
background: #94a3b8;
}
a {
color: #6366f1 !important;
text-decoration: none !important;
}
a:hover {
color: #4f46e5 !important;
text-decoration: underline !important;
}
.persona-desc {
background: #f0f9ff;
padding: 12px 16px;
border-radius: 8px;
border-left: 3px solid #6366f1;
margin: 8px 0;
color: #334155;
}
.tips-section {
background: #faf5ff;
border-radius: 8px;
padding: 14px;
margin-top: 12px;
color: #475569;
}
.tool-log {
background: #f0fdf4;
border: 1px solid #bbf7d0;
border-radius: 8px;
padding: 12px;
font-family: monospace;
font-size: 0.85rem;
color: #166534;
white-space: pre-wrap;
}
label, .label-wrap, span {
color: #475569 !important;
font-weight: 500 !important;
}
.info, p {
color: #64748b !important;
}
.markdown-text, .prose {
color: #334155 !important;
}
.row, .column {
background: transparent !important;
}
fieldset, .gr-box, .gr-form, .gr-panel {
border: none !important;
box-shadow: none !important;
}
</style>
"""
# Persona descriptions for UI
PERSONA_DESCRIPTIONS = {
"Devil's Advocate": "Challenges assumptions and argues the opposite perspective",
"Strategic Thinker": "Focuses on long-term consequences and strategic implications",
"Pragmatic Realist": "Grounds ideas in practical reality and implementation challenges",
"Systems Thinker": "Examines interconnections and systemic effects",
"Comprehensive Analyst": "Provides thorough multi-dimensional analysis"
}
with gr.Blocks(title="The Second Opinion") as app:
gr.HTML(custom_css)
gr.Markdown(
"""
# π§ The Second Opinion
<p style="text-align: center; color: #64748b; font-size: 1.1rem; margin-bottom: 1.5rem;">
Agentic analysis powered by MCP tools β’ Challenge your thinking β’ Catch blind spots β’ Discover alternatives
</p>
"""
)
with gr.Row():
with gr.Column(scale=1):
# Provider Section
with gr.Group(elem_classes="main-section"):
gr.Markdown("### π€ Provider")
provider_dropdown = gr.Dropdown(
choices=list(LLM_PROVIDERS.keys()),
value="Google (Gemini)",
label="AI Provider",
)
model_dropdown = gr.Dropdown(
choices=LLM_PROVIDERS["Google (Gemini)"]["models"],
value=LLM_PROVIDERS["Google (Gemini)"]["default_model"],
label="Model",
)
api_key_input = gr.Textbox(
label="API Key",
placeholder="Enter your API key...",
type="password",
info="Your key is never stored"
)
# Challenger Section
with gr.Group(elem_classes="main-section"):
gr.Markdown("### π Challenger")
persona_dropdown = gr.Dropdown(
choices=list(PERSONA_DESCRIPTIONS.keys()),
value="Comprehensive Analyst",
label="Persona",
info="Select your critical thinking style"
)
persona_description = gr.Markdown(
value="<div class='persona-desc'>π‘ " + PERSONA_DESCRIPTIONS["Comprehensive Analyst"] + "</div>"
)
# Settings Section
with gr.Group(elem_classes="main-section"):
gr.Markdown("### βοΈ Settings")
temperature_slider = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.5,
step=0.1,
label="Creativity",
info="Higher = more creative responses"
)
max_tokens_slider = gr.Slider(
minimum=1000,
maximum=8000,
value=4000,
step=500,
label="Response Length"
)
# Tool Activity Section
with gr.Group(elem_classes="main-section"):
gr.Markdown("### π§ MCP Tools Activity")
tool_log_display = gr.Textbox(
label="",
value="Tools will be called during analysis...",
lines=4,
interactive=False,
elem_classes="tool-log"
)
with gr.Accordion("π Available MCP Tools", open=False):
tools_md = ""
for name, tool in MCP_TOOLS.items():
tools_md += f"**{name}**\n{tool['description']}\n\n"
gr.Markdown(tools_md)
with gr.Accordion("π Persona Guide", open=False):
for name, desc in PERSONA_DESCRIPTIONS.items():
gr.Markdown(f"**{name}**\n{desc}\n")
with gr.Accordion("π API Keys", open=False):
gr.Markdown("""
**Get your API key:**
β’ [Anthropic Console](https://console.anthropic.com/)
β’ [OpenAI Platform](https://platform.openai.com/api-keys)
β’ [Google AI Studio](https://aistudio.google.com/app/apikey)
**HuggingFace Spaces:**
Set in Settings β Secrets:
`ANTHROPIC_API_KEY`, `OPENAI_API_KEY`, `GOOGLE_API_KEY`
""")
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary")
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="Conversation",
height=520
)
user_input = gr.Textbox(
label="Your Idea",
placeholder="Share your idea, decision, or question to get challenged...",
lines=3,
show_label=False
)
submit_btn = gr.Button("π Get Second Opinion", variant="primary")
gr.Markdown(
"""
<div class="tips-section">
<strong>π‘ Pro Tips:</strong> Be specific about your reasoning β’ Share your assumptions β’ The agent will automatically select and use relevant analysis tools β’ Try different personas for different perspectives
</div>
"""
)
# Example scenarios
gr.Markdown("### π Try an Example")
with gr.Row():
example_1 = gr.Button("π’ Career Move", size="sm")
example_2 = gr.Button("πΌ Business Pivot", size="sm")
example_3 = gr.Button("π― Product Launch", size="sm")
example_4 = gr.Button("π Investment", size="sm")
# Event handlers
def update_model_choices(provider):
provider_config = LLM_PROVIDERS.get(provider, LLM_PROVIDERS["Google (Gemini)"])
return gr.Dropdown(
choices=provider_config["models"],
value=provider_config["default_model"]
)
provider_dropdown.change(
fn=update_model_choices,
inputs=[provider_dropdown],
outputs=[model_dropdown]
)
def update_persona_description(persona):
return f"<div class='persona-desc'>π‘ {PERSONA_DESCRIPTIONS[persona]}</div>"
persona_dropdown.change(
fn=update_persona_description,
inputs=[persona_dropdown],
outputs=[persona_description]
)
def chat_interaction(user_msg, persona, provider, model, api_key,
history, temp, max_tok):
if not user_msg.strip():
return format_history_for_gradio(normalize_history(history)), "", "No input provided"
response, updated_history, tool_log = get_second_opinion(
user_msg,
persona,
provider,
model,
api_key,
history,
temperature=temp,
max_tokens=max_tok
)
if response.startswith("β οΈ"):
# Error occurred - append error to history
error_history = normalize_history(history)
error_history.append({"role": "user", "content": user_msg})
error_history.append({"role": "assistant", "content": response})
return format_history_for_gradio(error_history), "", tool_log or "Error occurred"
return updated_history, "", tool_log
submit_btn.click(
fn=chat_interaction,
inputs=[user_input, persona_dropdown, provider_dropdown, model_dropdown,
api_key_input, chatbot,
temperature_slider, max_tokens_slider],
outputs=[chatbot, user_input, tool_log_display]
)
user_input.submit(
fn=chat_interaction,
inputs=[user_input, persona_dropdown, provider_dropdown, model_dropdown,
api_key_input, chatbot,
temperature_slider, max_tokens_slider],
outputs=[chatbot, user_input, tool_log_display]
)
def clear_conversation():
return [], "", "Tools will be called during analysis..."
clear_btn.click(
fn=clear_conversation,
outputs=[chatbot, user_input, tool_log_display]
)
# Example scenarios
def load_example_1():
return "I'm considering leaving my stable job at a big tech company to join an early-stage startup. The startup is in an exciting space (AI tools) and I'd get equity, but the pay is 30% less. I'm 28, single, and have $50k in savings. I think this is the right move for my career growth."
def load_example_2():
return "Our SaaS company is planning to move upmarket from small businesses to enterprise customers. We'll increase prices 5x and add enterprise features. This should increase revenue per customer significantly. We have 2,000 SMB customers currently and strong product-market fit."
def load_example_3():
return "We want to add AI-powered auto-complete to our text editor. Users have been requesting it, our competitors have it, and we have the technical capability. We're planning to make it enabled by default for all users with an option to turn it off. This seems like a no-brainer feature to add."
def load_example_4():
return "I'm thinking of putting 30% of my portfolio into Bitcoin and cryptocurrency. Traditional markets are overvalued, inflation is high, and crypto is the future of finance. I'm 35 and have a moderate risk tolerance. The potential upside seems huge compared to bonds or index funds."
example_1.click(fn=load_example_1, outputs=[user_input])
example_2.click(fn=load_example_2, outputs=[user_input])
example_3.click(fn=load_example_3, outputs=[user_input])
example_4.click(fn=load_example_4, outputs=[user_input])
return app
# =============================================================================
# MAIN ENTRY POINT
# =============================================================================
if __name__ == "__main__":
app = create_interface()
app.launch() |