Update mcp_server.py
Browse files- mcp_server.py +548 -586
mcp_server.py
CHANGED
|
@@ -1,37 +1,153 @@
|
|
| 1 |
"""
|
| 2 |
MCP Server for Second Opinion AI Agent
|
| 3 |
Provides tools for analyzing ideas, detecting biases, and generating alternatives
|
|
|
|
| 4 |
"""
|
| 5 |
|
| 6 |
from mcp.server.fastmcp import FastMCP
|
| 7 |
from pydantic import BaseModel, Field
|
| 8 |
from typing import List, Dict, Optional, Literal
|
| 9 |
import json
|
|
|
|
| 10 |
from datetime import datetime
|
| 11 |
|
| 12 |
# Initialize FastMCP server
|
| 13 |
mcp = FastMCP("second-opinion-tools")
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
@mcp.tool()
|
| 37 |
def analyze_assumptions(idea: str, context: str = "") -> str:
|
|
@@ -46,39 +162,46 @@ def analyze_assumptions(idea: str, context: str = "") -> str:
|
|
| 46 |
JSON string containing identified assumptions, their implications, and questions to verify them
|
| 47 |
"""
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
}
|
| 80 |
|
| 81 |
-
return
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
@mcp.tool()
|
| 84 |
def detect_cognitive_biases(idea: str, reasoning: str = "") -> str:
|
|
@@ -93,71 +216,56 @@ def detect_cognitive_biases(idea: str, reasoning: str = "") -> str:
|
|
| 93 |
JSON string containing detected biases, their descriptions, and mitigation strategies
|
| 94 |
"""
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
"
|
| 118 |
-
"
|
| 119 |
-
"severity": "medium"
|
| 120 |
-
|
| 121 |
-
"optimism_bias": {
|
| 122 |
-
"name": "Optimism Bias",
|
| 123 |
-
"description": "Overestimating positive outcomes and underestimating risks",
|
| 124 |
-
"indicators": ["'it won't happen to us'", "underestimating complexity"],
|
| 125 |
-
"severity": "high"
|
| 126 |
-
},
|
| 127 |
-
"groupthink": {
|
| 128 |
-
"name": "Groupthink",
|
| 129 |
-
"description": "Desire for harmony leads to poor decision-making",
|
| 130 |
-
"indicators": ["suppressing dissent", "illusion of unanimity"],
|
| 131 |
-
"severity": "high"
|
| 132 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
}
|
| 134 |
|
| 135 |
-
|
| 136 |
-
"
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
"Actively seek disconfirming evidence",
|
| 140 |
-
"Consult diverse perspectives",
|
| 141 |
-
"Use pre-mortem analysis (imagine failure)",
|
| 142 |
-
"Set decision criteria before gathering information",
|
| 143 |
-
"Assign someone to play devil's advocate"
|
| 144 |
-
],
|
| 145 |
-
"debiasing_questions": [
|
| 146 |
-
"What evidence would change my mind?",
|
| 147 |
-
"Am I being overconfident?",
|
| 148 |
-
"What am I not seeing?",
|
| 149 |
-
"Would I make this decision if starting fresh today?"
|
| 150 |
-
]
|
| 151 |
-
}
|
| 152 |
-
|
| 153 |
-
return json.dumps(analysis, indent=2)
|
| 154 |
|
| 155 |
@mcp.tool()
|
| 156 |
-
def generate_alternatives(
|
| 157 |
-
idea: str,
|
| 158 |
-
constraints: str = "",
|
| 159 |
-
num_alternatives: int = 5
|
| 160 |
-
) -> str:
|
| 161 |
"""
|
| 162 |
Generates alternative approaches and solutions to consider.
|
| 163 |
|
|
@@ -170,105 +278,50 @@ def generate_alternatives(
|
|
| 170 |
JSON string containing diverse alternative approaches with pros/cons analysis
|
| 171 |
"""
|
| 172 |
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
"title": "Hybrid Solution",
|
| 212 |
-
"description": "Combine elements from multiple approaches",
|
| 213 |
-
"pros": [
|
| 214 |
-
"Balances trade-offs",
|
| 215 |
-
"Leverages strengths of each",
|
| 216 |
-
"More flexible"
|
| 217 |
-
],
|
| 218 |
-
"cons": [
|
| 219 |
-
"Can be complex",
|
| 220 |
-
"May lack clear focus",
|
| 221 |
-
"Harder to execute"
|
| 222 |
-
],
|
| 223 |
-
"feasibility": "medium"
|
| 224 |
-
},
|
| 225 |
-
{
|
| 226 |
-
"id": 4,
|
| 227 |
-
"title": "Wait and Learn",
|
| 228 |
-
"description": "Delay decision while gathering more information",
|
| 229 |
-
"pros": [
|
| 230 |
-
"Reduces uncertainty",
|
| 231 |
-
"Market may validate/invalidate",
|
| 232 |
-
"More data for better decision"
|
| 233 |
-
],
|
| 234 |
-
"cons": [
|
| 235 |
-
"Opportunity cost",
|
| 236 |
-
"Competitive disadvantage",
|
| 237 |
-
"Analysis paralysis risk"
|
| 238 |
-
],
|
| 239 |
-
"feasibility": "high"
|
| 240 |
-
},
|
| 241 |
-
{
|
| 242 |
-
"id": 5,
|
| 243 |
-
"title": "Minimum Viable Approach",
|
| 244 |
-
"description": "Find the simplest possible version that tests key assumptions",
|
| 245 |
-
"pros": [
|
| 246 |
-
"Fast to implement",
|
| 247 |
-
"Low resource commitment",
|
| 248 |
-
"Quick validation"
|
| 249 |
-
],
|
| 250 |
-
"cons": [
|
| 251 |
-
"May not fully represent vision",
|
| 252 |
-
"Limited scope",
|
| 253 |
-
"Could underestimate true potential"
|
| 254 |
-
],
|
| 255 |
-
"feasibility": "high"
|
| 256 |
-
}
|
| 257 |
-
][:num_alternatives],
|
| 258 |
-
"evaluation_framework": {
|
| 259 |
-
"criteria": [
|
| 260 |
-
"Alignment with goals",
|
| 261 |
-
"Risk level",
|
| 262 |
-
"Resource requirements",
|
| 263 |
-
"Time to value",
|
| 264 |
-
"Reversibility",
|
| 265 |
-
"Learning potential"
|
| 266 |
-
],
|
| 267 |
-
"process": "Score each alternative 1-10 on each criterion, then compare"
|
| 268 |
-
}
|
| 269 |
}
|
| 270 |
|
| 271 |
-
return
|
|
|
|
|
|
|
|
|
|
| 272 |
|
| 273 |
@mcp.tool()
|
| 274 |
def perform_premortem_analysis(idea: str, timeframe: str = "1 year") -> str:
|
|
@@ -283,76 +336,56 @@ def perform_premortem_analysis(idea: str, timeframe: str = "1 year") -> str:
|
|
| 283 |
JSON string containing potential failure modes, warning signs, and preventive measures
|
| 284 |
"""
|
| 285 |
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
]
|
| 327 |
-
"early_warning_signs": [
|
| 328 |
-
"Metrics trending wrong direction",
|
| 329 |
-
"Increasing resistance or skepticism",
|
| 330 |
-
"Scope creep and deadline slips",
|
| 331 |
-
"Key assumptions proving false",
|
| 332 |
-
"Team morale declining"
|
| 333 |
-
],
|
| 334 |
-
"preventive_measures": [
|
| 335 |
-
"Define clear success metrics upfront",
|
| 336 |
-
"Build in checkpoints for go/no-go decisions",
|
| 337 |
-
"Create contingency plans for top 3 risks",
|
| 338 |
-
"Establish kill criteria before starting",
|
| 339 |
-
"Schedule regular assumption testing"
|
| 340 |
-
],
|
| 341 |
-
"questions_to_answer": [
|
| 342 |
-
"What would need to be true for this to succeed?",
|
| 343 |
-
"What's our plan if X fails?",
|
| 344 |
-
"How will we know if we're on the wrong path?",
|
| 345 |
-
"What's our exit strategy?"
|
| 346 |
-
]
|
| 347 |
}
|
| 348 |
|
| 349 |
-
return
|
|
|
|
|
|
|
|
|
|
| 350 |
|
| 351 |
@mcp.tool()
|
| 352 |
-
def identify_stakeholders_and_impacts(
|
| 353 |
-
idea: str,
|
| 354 |
-
organization_context: str = ""
|
| 355 |
-
) -> str:
|
| 356 |
"""
|
| 357 |
Identifies all stakeholders and analyzes potential impacts on each group.
|
| 358 |
|
|
@@ -364,105 +397,58 @@ def identify_stakeholders_and_impacts(
|
|
| 364 |
JSON string containing stakeholder analysis with impacts, concerns, and engagement strategies
|
| 365 |
"""
|
| 366 |
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
"Resource allocation decisions",
|
| 405 |
-
"Strategic direction implications",
|
| 406 |
-
"Risk exposure"
|
| 407 |
-
],
|
| 408 |
-
"likely_concerns": [
|
| 409 |
-
"What's the ROI?",
|
| 410 |
-
"What are the risks?",
|
| 411 |
-
"How does this fit strategy?"
|
| 412 |
-
],
|
| 413 |
-
"engagement_strategy": "Business case, risk mitigation plan, metrics"
|
| 414 |
-
},
|
| 415 |
-
{
|
| 416 |
-
"group": "Adjacent Teams/Partners",
|
| 417 |
-
"impact_level": "medium",
|
| 418 |
-
"potential_impacts": [
|
| 419 |
-
"Workflow dependencies",
|
| 420 |
-
"Integration requirements",
|
| 421 |
-
"Coordination overhead"
|
| 422 |
-
],
|
| 423 |
-
"likely_concerns": [
|
| 424 |
-
"How does this affect our work?",
|
| 425 |
-
"What do we need to change?",
|
| 426 |
-
"Were we consulted?"
|
| 427 |
-
],
|
| 428 |
-
"engagement_strategy": "Early coordination, clear interfaces, collaborative planning"
|
| 429 |
-
},
|
| 430 |
-
{
|
| 431 |
-
"group": "Competitors/Market",
|
| 432 |
-
"impact_level": "low",
|
| 433 |
-
"potential_impacts": [
|
| 434 |
-
"Competitive dynamics shift",
|
| 435 |
-
"Market expectations change",
|
| 436 |
-
"Industry standards affected"
|
| 437 |
-
],
|
| 438 |
-
"likely_concerns": [
|
| 439 |
-
"How to respond?",
|
| 440 |
-
"Is this a threat or opportunity?"
|
| 441 |
-
],
|
| 442 |
-
"engagement_strategy": "Market monitoring, strategic positioning"
|
| 443 |
-
}
|
| 444 |
-
],
|
| 445 |
-
"overlooked_stakeholders": [
|
| 446 |
-
"Consider: Who maintains this long-term?",
|
| 447 |
-
"Consider: Who pays for this?",
|
| 448 |
-
"Consider: Who gets blamed if it fails?",
|
| 449 |
-
"Consider: Whose job becomes harder/easier?"
|
| 450 |
-
],
|
| 451 |
-
"conflict_analysis": {
|
| 452 |
-
"potential_conflicts": [
|
| 453 |
-
"Short-term costs vs long-term benefits",
|
| 454 |
-
"Individual convenience vs collective good",
|
| 455 |
-
"Innovation speed vs risk management"
|
| 456 |
-
],
|
| 457 |
-
"resolution_approaches": [
|
| 458 |
-
"Transparent trade-off discussions",
|
| 459 |
-
"Pilot programs to demonstrate value",
|
| 460 |
-
"Phased rollout to manage change"
|
| 461 |
-
]
|
| 462 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 463 |
}
|
| 464 |
|
| 465 |
-
return
|
|
|
|
|
|
|
|
|
|
| 466 |
|
| 467 |
@mcp.tool()
|
| 468 |
def second_order_thinking(idea: str, time_horizon: str = "2-5 years") -> str:
|
|
@@ -477,77 +463,75 @@ def second_order_thinking(idea: str, time_horizon: str = "2-5 years") -> str:
|
|
| 477 |
JSON string containing cascade of consequences and system-level effects
|
| 478 |
"""
|
| 479 |
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
"
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
"
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
"
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
]
|
| 541 |
}
|
| 542 |
|
| 543 |
-
return
|
|
|
|
|
|
|
|
|
|
| 544 |
|
| 545 |
@mcp.tool()
|
| 546 |
-
def opportunity_cost_analysis(
|
| 547 |
-
idea: str,
|
| 548 |
-
resources: str = "",
|
| 549 |
-
alternatives: str = ""
|
| 550 |
-
) -> str:
|
| 551 |
"""
|
| 552 |
Analyzes opportunity costs: what you give up by choosing this path.
|
| 553 |
|
|
@@ -560,75 +544,72 @@ def opportunity_cost_analysis(
|
|
| 560 |
JSON string containing opportunity cost analysis and trade-off framework
|
| 561 |
"""
|
| 562 |
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
"
|
| 584 |
-
|
| 585 |
-
"opportunity_cost": "Other priorities that get less attention",
|
| 586 |
-
"questions": [
|
| 587 |
-
"What falls through the cracks?",
|
| 588 |
-
"Where should attention be focused?"
|
| 589 |
-
]
|
| 590 |
-
},
|
| 591 |
-
"reputation": {
|
| 592 |
-
"direct_cost": "Credibility and social capital at stake",
|
| 593 |
-
"opportunity_cost": "Political capital spent, trust consumed",
|
| 594 |
-
"questions": [
|
| 595 |
-
"What if this fails publicly?",
|
| 596 |
-
"Is this worth spending reputation on?"
|
| 597 |
-
]
|
| 598 |
-
}
|
| 599 |
-
},
|
| 600 |
-
"trade_off_framework": {
|
| 601 |
-
"explicit_trade_offs": [
|
| 602 |
-
"What are we openly choosing to sacrifice?",
|
| 603 |
-
"What constraints are we accepting?"
|
| 604 |
-
],
|
| 605 |
-
"implicit_trade_offs": [
|
| 606 |
-
"What are we giving up without realizing it?",
|
| 607 |
-
"What doors close by choosing this path?"
|
| 608 |
-
],
|
| 609 |
-
"reversibility": [
|
| 610 |
-
"Can we undo this decision later?",
|
| 611 |
-
"What becomes locked in?",
|
| 612 |
-
"What optionality do we lose?"
|
| 613 |
-
]
|
| 614 |
},
|
| 615 |
-
"
|
| 616 |
-
"
|
| 617 |
-
|
| 618 |
-
|
| 619 |
-
"Is there a 10x better option we're not seeing?",
|
| 620 |
-
"Are we settling for local maximum?"
|
| 621 |
-
]
|
| 622 |
},
|
| 623 |
-
"
|
| 624 |
-
"
|
| 625 |
-
"
|
| 626 |
-
"
|
| 627 |
-
|
| 628 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 629 |
}
|
| 630 |
|
| 631 |
-
return
|
|
|
|
|
|
|
|
|
|
| 632 |
|
| 633 |
@mcp.tool()
|
| 634 |
def red_team_analysis(idea: str, attack_surface: str = "") -> str:
|
|
@@ -643,92 +624,73 @@ def red_team_analysis(idea: str, attack_surface: str = "") -> str:
|
|
| 643 |
JSON string containing attack vectors, vulnerabilities, and defensive measures
|
| 644 |
"""
|
| 645 |
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
-
|
| 676 |
-
|
| 677 |
-
|
| 678 |
-
|
| 679 |
-
|
| 680 |
-
|
| 681 |
-
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
|
| 694 |
-
|
| 695 |
-
|
| 696 |
-
|
| 697 |
-
|
| 698 |
-
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
|
| 702 |
-
|
| 703 |
-
"detection": [
|
| 704 |
-
"Monitor for anomalies",
|
| 705 |
-
"Set up alerts for abuse patterns",
|
| 706 |
-
"Track leading indicators",
|
| 707 |
-
"Regular security audits"
|
| 708 |
-
],
|
| 709 |
-
"response": [
|
| 710 |
-
"Incident response plan",
|
| 711 |
-
"Ability to roll back quickly",
|
| 712 |
-
"Clear escalation paths",
|
| 713 |
-
"Communication strategy"
|
| 714 |
-
]
|
| 715 |
-
},
|
| 716 |
-
"worst_case_scenarios": [
|
| 717 |
-
"What's the absolute worst that could happen?",
|
| 718 |
-
"How bad could this get before we notice?",
|
| 719 |
-
"What if our assumptions are completely wrong?",
|
| 720 |
-
"What if malicious actors target this?"
|
| 721 |
-
],
|
| 722 |
-
"stress_test_questions": [
|
| 723 |
-
"What breaks first under pressure?",
|
| 724 |
-
"Where is there no redundancy?",
|
| 725 |
-
"What do we trust that we shouldn't?",
|
| 726 |
-
"What could cascade into catastrophic failure?"
|
| 727 |
-
]
|
| 728 |
}
|
| 729 |
|
| 730 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 731 |
|
| 732 |
-
# Run the server
|
| 733 |
if __name__ == "__main__":
|
| 734 |
mcp.run()
|
|
|
|
| 1 |
"""
|
| 2 |
MCP Server for Second Opinion AI Agent
|
| 3 |
Provides tools for analyzing ideas, detecting biases, and generating alternatives
|
| 4 |
+
Tools use LLM to generate context-aware responses based on user input
|
| 5 |
"""
|
| 6 |
|
| 7 |
from mcp.server.fastmcp import FastMCP
|
| 8 |
from pydantic import BaseModel, Field
|
| 9 |
from typing import List, Dict, Optional, Literal
|
| 10 |
import json
|
| 11 |
+
import os
|
| 12 |
from datetime import datetime
|
| 13 |
|
| 14 |
# Initialize FastMCP server
|
| 15 |
mcp = FastMCP("second-opinion-tools")
|
| 16 |
|
| 17 |
+
# =============================================================================
|
| 18 |
+
# LLM INTEGRATION FOR CONTEXTUAL ANALYSIS
|
| 19 |
+
# =============================================================================
|
| 20 |
+
|
| 21 |
+
def get_llm_client():
|
| 22 |
+
"""Get an LLM client based on available API keys"""
|
| 23 |
+
# Try Google Gemini first (often has free tier)
|
| 24 |
+
google_key = os.environ.get("GOOGLE_API_KEY")
|
| 25 |
+
if google_key:
|
| 26 |
+
try:
|
| 27 |
+
import google.generativeai as genai
|
| 28 |
+
genai.configure(api_key=google_key)
|
| 29 |
+
return ("gemini", genai)
|
| 30 |
+
except ImportError:
|
| 31 |
+
pass
|
| 32 |
+
|
| 33 |
+
# Try OpenAI
|
| 34 |
+
openai_key = os.environ.get("OPENAI_API_KEY")
|
| 35 |
+
if openai_key:
|
| 36 |
+
try:
|
| 37 |
+
from openai import OpenAI
|
| 38 |
+
return ("openai", OpenAI(api_key=openai_key))
|
| 39 |
+
except ImportError:
|
| 40 |
+
pass
|
| 41 |
+
|
| 42 |
+
# Try Anthropic
|
| 43 |
+
anthropic_key = os.environ.get("ANTHROPIC_API_KEY")
|
| 44 |
+
if anthropic_key:
|
| 45 |
+
try:
|
| 46 |
+
import anthropic
|
| 47 |
+
return ("anthropic", anthropic.Anthropic(api_key=anthropic_key))
|
| 48 |
+
except ImportError:
|
| 49 |
+
pass
|
| 50 |
+
|
| 51 |
+
return (None, None)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def call_llm(prompt: str, max_tokens: int = 2000) -> str:
|
| 55 |
+
"""Call the available LLM with a prompt"""
|
| 56 |
+
provider, client = get_llm_client()
|
| 57 |
+
|
| 58 |
+
if provider is None:
|
| 59 |
+
return None # No LLM available, will fall back to template
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
if provider == "gemini":
|
| 63 |
+
model = client.GenerativeModel("gemini-2.0-flash-lite")
|
| 64 |
+
response = model.generate_content(prompt)
|
| 65 |
+
return response.text
|
| 66 |
+
|
| 67 |
+
elif provider == "openai":
|
| 68 |
+
response = client.chat.completions.create(
|
| 69 |
+
model="gpt-4o-mini",
|
| 70 |
+
messages=[{"role": "user", "content": prompt}],
|
| 71 |
+
max_tokens=max_tokens,
|
| 72 |
+
temperature=0.7
|
| 73 |
+
)
|
| 74 |
+
return response.choices[0].message.content
|
| 75 |
+
|
| 76 |
+
elif provider == "anthropic":
|
| 77 |
+
response = client.messages.create(
|
| 78 |
+
model="claude-haiku-4-5-20251001",
|
| 79 |
+
max_tokens=max_tokens,
|
| 80 |
+
messages=[{"role": "user", "content": prompt}]
|
| 81 |
+
)
|
| 82 |
+
return response.content[0].text
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
print(f"LLM call failed: {e}")
|
| 86 |
+
return None
|
| 87 |
+
|
| 88 |
+
return None
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def generate_contextual_analysis(tool_name: str, idea: str, extra_context: str,
|
| 92 |
+
analysis_prompt: str, fallback_template: dict) -> str:
|
| 93 |
+
"""
|
| 94 |
+
Generate contextual analysis using LLM, with fallback to template.
|
| 95 |
+
|
| 96 |
+
Args:
|
| 97 |
+
tool_name: Name of the tool for logging
|
| 98 |
+
idea: The user's idea to analyze
|
| 99 |
+
extra_context: Additional context provided by user
|
| 100 |
+
analysis_prompt: The specific prompt for this analysis type
|
| 101 |
+
fallback_template: Template to use if LLM is unavailable
|
| 102 |
+
|
| 103 |
+
Returns:
|
| 104 |
+
JSON string with analysis results
|
| 105 |
+
"""
|
| 106 |
+
full_prompt = f"""{analysis_prompt}
|
| 107 |
+
|
| 108 |
+
IDEA TO ANALYZE:
|
| 109 |
+
{idea}
|
| 110 |
+
|
| 111 |
+
{f"ADDITIONAL CONTEXT: {extra_context}" if extra_context else ""}
|
| 112 |
+
|
| 113 |
+
Respond with a valid JSON object only. No markdown, no code blocks, just the JSON."""
|
| 114 |
+
|
| 115 |
+
llm_response = call_llm(full_prompt)
|
| 116 |
+
|
| 117 |
+
if llm_response:
|
| 118 |
+
# Try to parse as JSON, clean up if needed
|
| 119 |
+
try:
|
| 120 |
+
# Remove markdown code blocks if present
|
| 121 |
+
cleaned = llm_response.strip()
|
| 122 |
+
if cleaned.startswith("```"):
|
| 123 |
+
cleaned = cleaned.split("\n", 1)[1] # Remove first line
|
| 124 |
+
if cleaned.endswith("```"):
|
| 125 |
+
cleaned = cleaned.rsplit("```", 1)[0]
|
| 126 |
+
cleaned = cleaned.strip()
|
| 127 |
+
|
| 128 |
+
# Validate it's JSON
|
| 129 |
+
parsed = json.loads(cleaned)
|
| 130 |
+
parsed["_generated"] = "contextual"
|
| 131 |
+
parsed["timestamp"] = datetime.now().isoformat()
|
| 132 |
+
return json.dumps(parsed, indent=2)
|
| 133 |
+
except json.JSONDecodeError:
|
| 134 |
+
# If not valid JSON, wrap the response
|
| 135 |
+
return json.dumps({
|
| 136 |
+
"timestamp": datetime.now().isoformat(),
|
| 137 |
+
"_generated": "contextual",
|
| 138 |
+
"analysis": llm_response
|
| 139 |
+
}, indent=2)
|
| 140 |
+
|
| 141 |
+
# Fallback to template
|
| 142 |
+
fallback_template["_generated"] = "template"
|
| 143 |
+
fallback_template["timestamp"] = datetime.now().isoformat()
|
| 144 |
+
fallback_template["idea_analyzed"] = idea[:200] + "..." if len(idea) > 200 else idea
|
| 145 |
+
return json.dumps(fallback_template, indent=2)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# =============================================================================
|
| 149 |
+
# MCP TOOLS
|
| 150 |
+
# =============================================================================
|
| 151 |
|
| 152 |
@mcp.tool()
|
| 153 |
def analyze_assumptions(idea: str, context: str = "") -> str:
|
|
|
|
| 162 |
JSON string containing identified assumptions, their implications, and questions to verify them
|
| 163 |
"""
|
| 164 |
|
| 165 |
+
analysis_prompt = """You are an expert critical thinking analyst. Analyze the given idea to identify ALL assumptions - both explicit and hidden.
|
| 166 |
+
|
| 167 |
+
Your analysis must be specific to this exact idea. Identify:
|
| 168 |
+
1. Explicit assumptions stated directly
|
| 169 |
+
2. Implicit/hidden assumptions not stated but required for the idea to work
|
| 170 |
+
3. Foundational beliefs the idea rests upon
|
| 171 |
+
4. Contextual assumptions about timing, market, resources, etc.
|
| 172 |
+
|
| 173 |
+
For each assumption, explain:
|
| 174 |
+
- What the assumption is
|
| 175 |
+
- Why it matters
|
| 176 |
+
- What happens if it's wrong
|
| 177 |
+
- How to verify it
|
| 178 |
+
|
| 179 |
+
Return a JSON object with this structure:
|
| 180 |
+
{
|
| 181 |
+
"idea_summary": "brief summary of the idea",
|
| 182 |
+
"explicit_assumptions": [
|
| 183 |
+
{"assumption": "...", "importance": "high/medium/low", "verification": "how to test this"}
|
| 184 |
+
],
|
| 185 |
+
"hidden_assumptions": [
|
| 186 |
+
{"assumption": "...", "why_hidden": "...", "risk_if_wrong": "..."}
|
| 187 |
+
],
|
| 188 |
+
"foundational_beliefs": ["belief 1", "belief 2"],
|
| 189 |
+
"critical_questions": ["question 1", "question 2", "question 3"],
|
| 190 |
+
"highest_risk_assumption": "the assumption most likely to be wrong or cause failure"
|
| 191 |
+
}"""
|
| 192 |
+
|
| 193 |
+
fallback = {
|
| 194 |
+
"explicit_assumptions": ["Unable to analyze - LLM not available"],
|
| 195 |
+
"hidden_assumptions": ["Please check API key configuration"],
|
| 196 |
+
"foundational_beliefs": [],
|
| 197 |
+
"critical_questions": [],
|
| 198 |
+
"highest_risk_assumption": "Analysis unavailable"
|
| 199 |
}
|
| 200 |
|
| 201 |
+
return generate_contextual_analysis(
|
| 202 |
+
"analyze_assumptions", idea, context, analysis_prompt, fallback
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
|
| 206 |
@mcp.tool()
|
| 207 |
def detect_cognitive_biases(idea: str, reasoning: str = "") -> str:
|
|
|
|
| 216 |
JSON string containing detected biases, their descriptions, and mitigation strategies
|
| 217 |
"""
|
| 218 |
|
| 219 |
+
analysis_prompt = """You are a cognitive bias expert. Analyze the given idea and reasoning to detect specific cognitive biases that may be affecting the thinking.
|
| 220 |
+
|
| 221 |
+
Look for evidence of these common biases:
|
| 222 |
+
- Confirmation bias (seeking confirming evidence)
|
| 223 |
+
- Anchoring bias (over-relying on first information)
|
| 224 |
+
- Sunk cost fallacy (continuing due to past investment)
|
| 225 |
+
- Availability bias (overweighting recent/memorable events)
|
| 226 |
+
- Optimism bias (underestimating risks)
|
| 227 |
+
- Survivorship bias (only seeing successes)
|
| 228 |
+
- Dunning-Kruger effect (overestimating competence)
|
| 229 |
+
- Status quo bias (preferring current state)
|
| 230 |
+
- Bandwagon effect (following the crowd)
|
| 231 |
+
- Recency bias (overweighting recent events)
|
| 232 |
+
|
| 233 |
+
For each bias detected, provide SPECIFIC evidence from the idea/reasoning.
|
| 234 |
+
|
| 235 |
+
Return a JSON object with this structure:
|
| 236 |
+
{
|
| 237 |
+
"idea_summary": "brief summary",
|
| 238 |
+
"detected_biases": [
|
| 239 |
+
{
|
| 240 |
+
"bias_name": "name of bias",
|
| 241 |
+
"evidence": "specific quote or aspect that shows this bias",
|
| 242 |
+
"severity": "high/medium/low",
|
| 243 |
+
"how_it_distorts": "how this bias is affecting the decision"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
}
|
| 245 |
+
],
|
| 246 |
+
"most_concerning_bias": "the bias most likely to lead to a bad decision",
|
| 247 |
+
"debiasing_strategies": [
|
| 248 |
+
"specific action to counter the biases found"
|
| 249 |
+
],
|
| 250 |
+
"questions_to_ask": [
|
| 251 |
+
"question that would help overcome these biases"
|
| 252 |
+
]
|
| 253 |
+
}"""
|
| 254 |
+
|
| 255 |
+
fallback = {
|
| 256 |
+
"detected_biases": [{"bias_name": "Analysis unavailable", "evidence": "LLM not configured", "severity": "unknown"}],
|
| 257 |
+
"most_concerning_bias": "Unable to analyze",
|
| 258 |
+
"debiasing_strategies": ["Check API configuration"],
|
| 259 |
+
"questions_to_ask": []
|
| 260 |
}
|
| 261 |
|
| 262 |
+
return generate_contextual_analysis(
|
| 263 |
+
"detect_cognitive_biases", idea, reasoning, analysis_prompt, fallback
|
| 264 |
+
)
|
| 265 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
|
| 267 |
@mcp.tool()
|
| 268 |
+
def generate_alternatives(idea: str, constraints: str = "", num_alternatives: int = 5) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
"""
|
| 270 |
Generates alternative approaches and solutions to consider.
|
| 271 |
|
|
|
|
| 278 |
JSON string containing diverse alternative approaches with pros/cons analysis
|
| 279 |
"""
|
| 280 |
|
| 281 |
+
num_alternatives = max(1, min(10, num_alternatives))
|
| 282 |
+
|
| 283 |
+
analysis_prompt = f"""You are a creative strategist. Generate {num_alternatives} genuinely different alternatives to the proposed idea.
|
| 284 |
+
|
| 285 |
+
Don't just tweak the original - think of fundamentally different approaches that could achieve similar goals.
|
| 286 |
+
|
| 287 |
+
Consider:
|
| 288 |
+
- What if we did the opposite?
|
| 289 |
+
- What's the minimum viable version?
|
| 290 |
+
- What would a 10x version look like?
|
| 291 |
+
- How would different industries solve this?
|
| 292 |
+
- What if we removed a key constraint?
|
| 293 |
+
|
| 294 |
+
{f"CONSTRAINTS TO WORK WITHIN: {constraints}" if constraints else ""}
|
| 295 |
+
|
| 296 |
+
Return a JSON object with this structure:
|
| 297 |
+
{{
|
| 298 |
+
"original_idea_summary": "brief summary of original",
|
| 299 |
+
"goal_identified": "the underlying goal this idea is trying to achieve",
|
| 300 |
+
"alternatives": [
|
| 301 |
+
{{
|
| 302 |
+
"name": "descriptive name",
|
| 303 |
+
"description": "what this alternative involves",
|
| 304 |
+
"how_different": "how this differs from the original",
|
| 305 |
+
"pros": ["advantage 1", "advantage 2"],
|
| 306 |
+
"cons": ["disadvantage 1", "disadvantage 2"],
|
| 307 |
+
"feasibility": "high/medium/low",
|
| 308 |
+
"best_if": "scenario where this alternative would be best"
|
| 309 |
+
}}
|
| 310 |
+
],
|
| 311 |
+
"recommended_alternative": "which alternative seems most promising and why",
|
| 312 |
+
"hybrid_suggestion": "how to combine elements from multiple alternatives"
|
| 313 |
+
}}"""
|
| 314 |
+
|
| 315 |
+
fallback = {
|
| 316 |
+
"original_idea_summary": "Analysis unavailable",
|
| 317 |
+
"alternatives": [{"name": "LLM not available", "description": "Please configure API keys"}],
|
| 318 |
+
"recommended_alternative": "Unable to analyze"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
}
|
| 320 |
|
| 321 |
+
return generate_contextual_analysis(
|
| 322 |
+
"generate_alternatives", idea, constraints, analysis_prompt, fallback
|
| 323 |
+
)
|
| 324 |
+
|
| 325 |
|
| 326 |
@mcp.tool()
|
| 327 |
def perform_premortem_analysis(idea: str, timeframe: str = "1 year") -> str:
|
|
|
|
| 336 |
JSON string containing potential failure modes, warning signs, and preventive measures
|
| 337 |
"""
|
| 338 |
|
| 339 |
+
analysis_prompt = f"""You are a risk analyst performing a pre-mortem analysis. Imagine it's {timeframe} from now and this idea has COMPLETELY FAILED.
|
| 340 |
+
|
| 341 |
+
Your job is to work backwards and identify all the reasons why it failed. Be specific to THIS idea - don't give generic failure modes.
|
| 342 |
+
|
| 343 |
+
Consider failures in:
|
| 344 |
+
- Execution (team, skills, timeline)
|
| 345 |
+
- Market/External factors (competition, regulation, timing)
|
| 346 |
+
- Strategy (wrong problem, wrong solution)
|
| 347 |
+
- Resources (money, people, technology)
|
| 348 |
+
- Assumptions (what turned out to be wrong)
|
| 349 |
+
|
| 350 |
+
Return a JSON object with this structure:
|
| 351 |
+
{{
|
| 352 |
+
"scenario": "It's {timeframe} from now, and the idea has failed because...",
|
| 353 |
+
"primary_cause_of_failure": "the single biggest reason it failed",
|
| 354 |
+
"failure_modes": [
|
| 355 |
+
{{
|
| 356 |
+
"category": "execution/market/strategy/resources/assumptions",
|
| 357 |
+
"what_went_wrong": "specific failure",
|
| 358 |
+
"probability": "high/medium/low",
|
| 359 |
+
"impact": "catastrophic/major/moderate/minor"
|
| 360 |
+
}}
|
| 361 |
+
],
|
| 362 |
+
"early_warning_signs": [
|
| 363 |
+
"specific signal that would indicate this failure is coming"
|
| 364 |
+
],
|
| 365 |
+
"preventive_actions": [
|
| 366 |
+
{{
|
| 367 |
+
"action": "what to do now",
|
| 368 |
+
"prevents": "which failure mode this addresses"
|
| 369 |
+
}}
|
| 370 |
+
],
|
| 371 |
+
"kill_criteria": "conditions under which you should abandon this idea",
|
| 372 |
+
"plan_b": "what to do if this fails"
|
| 373 |
+
}}"""
|
| 374 |
+
|
| 375 |
+
fallback = {
|
| 376 |
+
"scenario": f"Analysis for {timeframe} timeframe unavailable",
|
| 377 |
+
"failure_modes": [{"category": "unknown", "what_went_wrong": "LLM not configured"}],
|
| 378 |
+
"early_warning_signs": [],
|
| 379 |
+
"preventive_actions": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 380 |
}
|
| 381 |
|
| 382 |
+
return generate_contextual_analysis(
|
| 383 |
+
"perform_premortem_analysis", idea, timeframe, analysis_prompt, fallback
|
| 384 |
+
)
|
| 385 |
+
|
| 386 |
|
| 387 |
@mcp.tool()
|
| 388 |
+
def identify_stakeholders_and_impacts(idea: str, organization_context: str = "") -> str:
|
|
|
|
|
|
|
|
|
|
| 389 |
"""
|
| 390 |
Identifies all stakeholders and analyzes potential impacts on each group.
|
| 391 |
|
|
|
|
| 397 |
JSON string containing stakeholder analysis with impacts, concerns, and engagement strategies
|
| 398 |
"""
|
| 399 |
|
| 400 |
+
analysis_prompt = """You are a stakeholder analysis expert. Identify ALL parties who will be affected by this idea - both obvious and non-obvious stakeholders.
|
| 401 |
+
|
| 402 |
+
For each stakeholder, analyze:
|
| 403 |
+
- How they'll be impacted (positively or negatively)
|
| 404 |
+
- What their likely concerns will be
|
| 405 |
+
- Whether they have power to help or block this
|
| 406 |
+
- How to engage them effectively
|
| 407 |
+
|
| 408 |
+
Don't forget often-overlooked stakeholders like:
|
| 409 |
+
- People who maintain/support this long-term
|
| 410 |
+
- Those whose workload changes
|
| 411 |
+
- Competitors and their customers
|
| 412 |
+
- Regulators or compliance teams
|
| 413 |
+
- Future employees/customers
|
| 414 |
+
|
| 415 |
+
Return a JSON object with this structure:
|
| 416 |
+
{
|
| 417 |
+
"idea_summary": "brief summary",
|
| 418 |
+
"stakeholders": [
|
| 419 |
+
{
|
| 420 |
+
"group": "stakeholder name",
|
| 421 |
+
"relationship": "how they relate to this idea",
|
| 422 |
+
"impact": "positive/negative/mixed",
|
| 423 |
+
"impact_description": "specific ways they're affected",
|
| 424 |
+
"likely_concerns": ["concern 1", "concern 2"],
|
| 425 |
+
"power_level": "high/medium/low",
|
| 426 |
+
"engagement_strategy": "how to work with them"
|
| 427 |
+
}
|
| 428 |
+
],
|
| 429 |
+
"most_affected": "who has the most at stake",
|
| 430 |
+
"potential_blockers": ["stakeholders who might resist"],
|
| 431 |
+
"potential_champions": ["stakeholders who might advocate"],
|
| 432 |
+
"conflicts_to_manage": [
|
| 433 |
+
{
|
| 434 |
+
"between": "stakeholder A vs stakeholder B",
|
| 435 |
+
"conflict": "what they disagree about",
|
| 436 |
+
"resolution_approach": "how to address"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
}
|
| 438 |
+
],
|
| 439 |
+
"stakeholder_not_consulted": "who should be involved but often isn't"
|
| 440 |
+
}"""
|
| 441 |
+
|
| 442 |
+
fallback = {
|
| 443 |
+
"stakeholders": [{"group": "Analysis unavailable", "impact": "unknown"}],
|
| 444 |
+
"most_affected": "Unable to analyze",
|
| 445 |
+
"conflicts_to_manage": []
|
| 446 |
}
|
| 447 |
|
| 448 |
+
return generate_contextual_analysis(
|
| 449 |
+
"identify_stakeholders_and_impacts", idea, organization_context, analysis_prompt, fallback
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
|
| 453 |
@mcp.tool()
|
| 454 |
def second_order_thinking(idea: str, time_horizon: str = "2-5 years") -> str:
|
|
|
|
| 463 |
JSON string containing cascade of consequences and system-level effects
|
| 464 |
"""
|
| 465 |
|
| 466 |
+
analysis_prompt = f"""You are a systems thinker analyzing cascading consequences. For the given idea, think through what happens AFTER the immediate effects.
|
| 467 |
+
|
| 468 |
+
First-order effects are obvious. Your job is to find the second, third, and nth-order effects that aren't obvious.
|
| 469 |
+
|
| 470 |
+
Think about:
|
| 471 |
+
- How will people ADAPT to this change?
|
| 472 |
+
- What new behaviors will emerge?
|
| 473 |
+
- What feedback loops will be created?
|
| 474 |
+
- What becomes possible that wasn't before?
|
| 475 |
+
- What becomes impossible?
|
| 476 |
+
- What unintended consequences might occur?
|
| 477 |
+
|
| 478 |
+
Time horizon to consider: {time_horizon}
|
| 479 |
+
|
| 480 |
+
Return a JSON object with this structure:
|
| 481 |
+
{{
|
| 482 |
+
"idea_summary": "brief summary",
|
| 483 |
+
"first_order_effects": [
|
| 484 |
+
"immediate, obvious consequence 1",
|
| 485 |
+
"immediate, obvious consequence 2"
|
| 486 |
+
],
|
| 487 |
+
"second_order_effects": [
|
| 488 |
+
{{
|
| 489 |
+
"effect": "what happens as a result of first-order effects",
|
| 490 |
+
"caused_by": "which first-order effect leads to this",
|
| 491 |
+
"timeline": "when this would manifest"
|
| 492 |
+
}}
|
| 493 |
+
],
|
| 494 |
+
"third_order_effects": [
|
| 495 |
+
{{
|
| 496 |
+
"effect": "deeper consequence",
|
| 497 |
+
"chain": "first order -> second order -> this",
|
| 498 |
+
"probability": "high/medium/low"
|
| 499 |
+
}}
|
| 500 |
+
],
|
| 501 |
+
"feedback_loops": [
|
| 502 |
+
{{
|
| 503 |
+
"type": "reinforcing/balancing",
|
| 504 |
+
"description": "what cycle gets created",
|
| 505 |
+
"implication": "why this matters"
|
| 506 |
+
}}
|
| 507 |
+
],
|
| 508 |
+
"unintended_consequences": [
|
| 509 |
+
{{
|
| 510 |
+
"consequence": "what might happen unexpectedly",
|
| 511 |
+
"positive_or_negative": "positive/negative",
|
| 512 |
+
"how_to_monitor": "how to detect this early"
|
| 513 |
+
}}
|
| 514 |
+
],
|
| 515 |
+
"what_becomes_possible": ["new opportunity 1"],
|
| 516 |
+
"what_becomes_impossible": ["closed door 1"],
|
| 517 |
+
"biggest_long_term_risk": "the consequence most likely to cause regret"
|
| 518 |
+
}}"""
|
| 519 |
+
|
| 520 |
+
fallback = {
|
| 521 |
+
"first_order_effects": ["Analysis unavailable - LLM not configured"],
|
| 522 |
+
"second_order_effects": [],
|
| 523 |
+
"third_order_effects": [],
|
| 524 |
+
"feedback_loops": [],
|
| 525 |
+
"unintended_consequences": []
|
|
|
|
| 526 |
}
|
| 527 |
|
| 528 |
+
return generate_contextual_analysis(
|
| 529 |
+
"second_order_thinking", idea, time_horizon, analysis_prompt, fallback
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
|
| 533 |
@mcp.tool()
|
| 534 |
+
def opportunity_cost_analysis(idea: str, resources: str = "", alternatives: str = "") -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
"""
|
| 536 |
Analyzes opportunity costs: what you give up by choosing this path.
|
| 537 |
|
|
|
|
| 544 |
JSON string containing opportunity cost analysis and trade-off framework
|
| 545 |
"""
|
| 546 |
|
| 547 |
+
extra_context = f"Resources available: {resources}\nAlternatives mentioned: {alternatives}" if resources or alternatives else ""
|
| 548 |
+
|
| 549 |
+
analysis_prompt = """You are an economist analyzing opportunity costs. For every choice, something is given up. Identify what's being sacrificed by pursuing this idea.
|
| 550 |
+
|
| 551 |
+
Consider opportunity costs across:
|
| 552 |
+
- Time (what else could this time be spent on?)
|
| 553 |
+
- Money (what else could this money fund?)
|
| 554 |
+
- Attention (what gets less focus?)
|
| 555 |
+
- Talent (what else could these people work on?)
|
| 556 |
+
- Reputation (what credibility is at stake?)
|
| 557 |
+
- Optionality (what future choices are foreclosed?)
|
| 558 |
+
|
| 559 |
+
Be specific to this idea - what are the ACTUAL trade-offs?
|
| 560 |
+
|
| 561 |
+
Return a JSON object with this structure:
|
| 562 |
+
{
|
| 563 |
+
"idea_summary": "brief summary",
|
| 564 |
+
"resource_commitments": {
|
| 565 |
+
"time": {
|
| 566 |
+
"amount": "estimated time commitment",
|
| 567 |
+
"opportunity_cost": "what else could be done with this time",
|
| 568 |
+
"is_worth_it": "yes/no/uncertain with reasoning"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 569 |
},
|
| 570 |
+
"money": {
|
| 571 |
+
"amount": "estimated financial commitment",
|
| 572 |
+
"opportunity_cost": "alternative uses for this money",
|
| 573 |
+
"is_worth_it": "yes/no/uncertain with reasoning"
|
|
|
|
|
|
|
|
|
|
| 574 |
},
|
| 575 |
+
"attention": {
|
| 576 |
+
"amount": "how much focus this requires",
|
| 577 |
+
"opportunity_cost": "what gets deprioritized",
|
| 578 |
+
"is_worth_it": "yes/no/uncertain with reasoning"
|
| 579 |
+
}
|
| 580 |
+
},
|
| 581 |
+
"doors_that_close": [
|
| 582 |
+
"option that becomes unavailable by choosing this"
|
| 583 |
+
],
|
| 584 |
+
"hidden_costs": [
|
| 585 |
+
"cost that isn't obvious upfront"
|
| 586 |
+
],
|
| 587 |
+
"reversibility": {
|
| 588 |
+
"is_reversible": "yes/partially/no",
|
| 589 |
+
"cost_to_reverse": "what it would take to undo this",
|
| 590 |
+
"point_of_no_return": "when does this become irreversible"
|
| 591 |
+
},
|
| 592 |
+
"better_uses_of_resources": [
|
| 593 |
+
{
|
| 594 |
+
"alternative": "what else you could do",
|
| 595 |
+
"expected_value": "potential outcome",
|
| 596 |
+
"why_not_doing_this": "reason this might not be chosen"
|
| 597 |
+
}
|
| 598 |
+
],
|
| 599 |
+
"key_question": "the most important trade-off question to answer before proceeding"
|
| 600 |
+
}"""
|
| 601 |
+
|
| 602 |
+
fallback = {
|
| 603 |
+
"resource_commitments": {"time": {"opportunity_cost": "Analysis unavailable"}},
|
| 604 |
+
"doors_that_close": [],
|
| 605 |
+
"hidden_costs": [],
|
| 606 |
+
"reversibility": {"is_reversible": "unknown"}
|
| 607 |
}
|
| 608 |
|
| 609 |
+
return generate_contextual_analysis(
|
| 610 |
+
"opportunity_cost_analysis", idea, extra_context, analysis_prompt, fallback
|
| 611 |
+
)
|
| 612 |
+
|
| 613 |
|
| 614 |
@mcp.tool()
|
| 615 |
def red_team_analysis(idea: str, attack_surface: str = "") -> str:
|
|
|
|
| 624 |
JSON string containing attack vectors, vulnerabilities, and defensive measures
|
| 625 |
"""
|
| 626 |
|
| 627 |
+
analysis_prompt = """You are a red team analyst. Your job is to BREAK this idea. Think like an adversary, a competitor, a malicious user, or just Murphy's Law.
|
| 628 |
+
|
| 629 |
+
Attack from multiple angles:
|
| 630 |
+
- How could users game/exploit this?
|
| 631 |
+
- How could competitors undermine this?
|
| 632 |
+
- What technical/operational failures could occur?
|
| 633 |
+
- What edge cases break the model?
|
| 634 |
+
- How could this be weaponized or misused?
|
| 635 |
+
- What happens at 10x or 100x scale?
|
| 636 |
+
|
| 637 |
+
Be creative and ruthless. Find the weaknesses.
|
| 638 |
+
|
| 639 |
+
Return a JSON object with this structure:
|
| 640 |
+
{
|
| 641 |
+
"idea_summary": "brief summary",
|
| 642 |
+
"attack_vectors": [
|
| 643 |
+
{
|
| 644 |
+
"attack_name": "descriptive name",
|
| 645 |
+
"category": "gaming/competition/technical/scaling/misuse",
|
| 646 |
+
"how_attack_works": "step by step how this exploits the idea",
|
| 647 |
+
"likelihood": "high/medium/low",
|
| 648 |
+
"impact": "catastrophic/major/moderate/minor",
|
| 649 |
+
"example_scenario": "concrete example of this attack"
|
| 650 |
+
}
|
| 651 |
+
],
|
| 652 |
+
"critical_vulnerabilities": [
|
| 653 |
+
{
|
| 654 |
+
"vulnerability": "what's weak",
|
| 655 |
+
"why_its_critical": "why this matters",
|
| 656 |
+
"fix": "how to address"
|
| 657 |
+
}
|
| 658 |
+
],
|
| 659 |
+
"what_breaks_at_scale": [
|
| 660 |
+
"thing that works now but fails at 10x/100x"
|
| 661 |
+
],
|
| 662 |
+
"worst_case_scenario": {
|
| 663 |
+
"scenario": "the absolute worst thing that could happen",
|
| 664 |
+
"probability": "high/medium/low",
|
| 665 |
+
"how_to_prevent": "what would stop this"
|
| 666 |
+
},
|
| 667 |
+
"defensive_recommendations": [
|
| 668 |
+
{
|
| 669 |
+
"defense": "what to implement",
|
| 670 |
+
"addresses": "which attacks/vulnerabilities this covers",
|
| 671 |
+
"priority": "immediate/soon/eventually"
|
| 672 |
+
}
|
| 673 |
+
],
|
| 674 |
+
"monitoring_needed": [
|
| 675 |
+
"signal to watch for that indicates attack/failure"
|
| 676 |
+
]
|
| 677 |
+
}"""
|
| 678 |
+
|
| 679 |
+
fallback = {
|
| 680 |
+
"attack_vectors": [{"attack_name": "Analysis unavailable", "how_attack_works": "LLM not configured"}],
|
| 681 |
+
"critical_vulnerabilities": [],
|
| 682 |
+
"worst_case_scenario": {"scenario": "Unable to analyze"},
|
| 683 |
+
"defensive_recommendations": []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 684 |
}
|
| 685 |
|
| 686 |
+
return generate_contextual_analysis(
|
| 687 |
+
"red_team_analysis", idea, attack_surface, analysis_prompt, fallback
|
| 688 |
+
)
|
| 689 |
+
|
| 690 |
+
|
| 691 |
+
# =============================================================================
|
| 692 |
+
# RUN SERVER
|
| 693 |
+
# =============================================================================
|
| 694 |
|
|
|
|
| 695 |
if __name__ == "__main__":
|
| 696 |
mcp.run()
|