Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,296 +1,241 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
#
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
#
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
#
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
#
|
| 21 |
-
|
| 22 |
-
|
| 23 |
|
| 24 |
-
|
| 25 |
-
#
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
#
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
#
|
| 47 |
-
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
|
| 51 |
|
| 52 |
-
#
|
| 53 |
-
|
| 54 |
|
| 55 |
-
#
|
| 56 |
-
|
| 57 |
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
|
| 67 |
-
|
| 68 |
|
| 69 |
-
|
| 70 |
-
#
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
#
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
#
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
#
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
#
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
#
|
| 106 |
-
|
| 107 |
-
#
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
#
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
#
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
#
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
#
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
#
|
| 170 |
-
|
| 171 |
-
#
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
#
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
|
| 186 |
-
#
|
| 187 |
-
|
| 188 |
|
| 189 |
-
#
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
|
| 197 |
-
#
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
|
| 206 |
-
#
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
|
| 218 |
-
#
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
|
| 224 |
-
#
|
| 225 |
-
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
# # Create and launch the demo
|
| 230 |
-
# demo = create_chatbot_interface()
|
| 231 |
-
|
| 232 |
-
# # Launch the demo
|
| 233 |
-
# if __name__ == "__main__":
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
# demo.queue(max_size=3).launch()
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
from transformers import LlamaForCausalLM, AutoTokenizer, pipeline
|
| 242 |
-
|
| 243 |
-
model = LlamaForCausalLM.from_pretrained(
|
| 244 |
-
"abhinand/tamil-llama-instruct-v0.2",
|
| 245 |
-
#load_in_8bit=True, # Set this depending on the GPU you have
|
| 246 |
-
torch_dtype=torch.bfloat16,
|
| 247 |
-
device_map={"": 0}, # Set this depending on the number of GPUs you have
|
| 248 |
-
local_files_only=False # Optional
|
| 249 |
-
)
|
| 250 |
-
model.eval()
|
| 251 |
-
|
| 252 |
-
tokenizer = AutoTokenizer.from_pretrained("abhinand/tamil-llama-instruct-v0.2")
|
| 253 |
-
|
| 254 |
-
inf_pipeline = pipeline("conversational", model=model, tokenizer=tokenizer)
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
def format_instruction(system_prompt, question, return_dict=False):
|
| 258 |
-
if system_prompt is None:
|
| 259 |
-
messages = [
|
| 260 |
-
{'content': question, 'role': 'user'},
|
| 261 |
-
]
|
| 262 |
-
else:
|
| 263 |
-
messages = [
|
| 264 |
-
{'content': system_prompt, 'role': 'system'},
|
| 265 |
-
{'content': question, 'role': 'user'},
|
| 266 |
-
]
|
| 267 |
|
| 268 |
-
|
| 269 |
-
|
| 270 |
|
| 271 |
-
|
|
|
|
| 272 |
|
| 273 |
-
return prompt
|
| 274 |
|
|
|
|
| 275 |
|
| 276 |
-
# Set the generation configuration according to your needs
|
| 277 |
-
temperature = 0.6
|
| 278 |
-
repetition_penalty = 1.1
|
| 279 |
-
max_new_tokens = 256
|
| 280 |
|
| 281 |
-
SYSTEM_PROMPT = "You are an AI assistant who follows instructions extremely well and reply only in tamil and also can understand tamil input. Do your best your best to help."
|
| 282 |
-
INPUT = "Can you explain the significance of Tamil festival Pongal?"
|
| 283 |
|
| 284 |
-
instruction = format_instruction(
|
| 285 |
-
system_prompt=SYSTEM_PROMPT,
|
| 286 |
-
question=INPUT,
|
| 287 |
-
return_dict=True,
|
| 288 |
-
)
|
| 289 |
|
| 290 |
-
|
| 291 |
-
instruction,
|
| 292 |
-
temperature=temperature,
|
| 293 |
-
max_new_tokens=max_new_tokens,
|
| 294 |
-
repetition_penalty=repetition_penalty
|
| 295 |
-
)
|
| 296 |
-
print(output)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# Define paths for storage - avoid persistent folder issues
|
| 7 |
+
MODEL_CACHE_DIR = "./model_cache"
|
| 8 |
+
HF_HOME_DIR = "./hf_home"
|
| 9 |
+
TRANSFORMERS_CACHE_DIR = "./transformers_cache"
|
| 10 |
+
|
| 11 |
+
# Set environment variables
|
| 12 |
+
os.environ["HF_HOME"] = HF_HOME_DIR
|
| 13 |
+
os.environ["TRANSFORMERS_CACHE"] = TRANSFORMERS_CACHE_DIR
|
| 14 |
+
|
| 15 |
+
# Create cache directories if they don't exist
|
| 16 |
+
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
|
| 17 |
+
os.makedirs(HF_HOME_DIR, exist_ok=True)
|
| 18 |
+
os.makedirs(TRANSFORMERS_CACHE_DIR, exist_ok=True)
|
| 19 |
+
|
| 20 |
+
# Initialize the model and tokenizer - only when explicitly requested
|
| 21 |
+
def initialize_model():
|
| 22 |
+
print("Loading model and tokenizer... This may take a few minutes.")
|
| 23 |
|
| 24 |
+
try:
|
| 25 |
+
# Load the tokenizer
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 27 |
+
"abhinand/tamil-llama-7b-instruct-v0.2",
|
| 28 |
+
cache_dir=MODEL_CACHE_DIR
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
# CPU-friendly configuration
|
| 32 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
+
"abhinand/tamil-llama-7b-instruct-v0.2",
|
| 34 |
+
device_map="auto",
|
| 35 |
+
torch_dtype="auto",
|
| 36 |
+
low_cpu_mem_usage=True,
|
| 37 |
+
cache_dir=MODEL_CACHE_DIR
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
print("Model and tokenizer loaded successfully!")
|
| 41 |
+
return model, tokenizer
|
| 42 |
+
except Exception as e:
|
| 43 |
+
print(f"Error loading model: {e}")
|
| 44 |
+
return None, None
|
| 45 |
+
|
| 46 |
+
# Generate response
|
| 47 |
+
def generate_response(model, tokenizer, user_input, chat_history, temperature=0.2, top_p=1.0, top_k=40):
|
| 48 |
+
# Check if model and tokenizer are loaded
|
| 49 |
+
if model is None or tokenizer is None:
|
| 50 |
+
return "மாதிரி ஏற்றப்படவில்லை. 'மாதிரியை ஏற்று' பொத்தானைக் கிளிக் செய்யவும்." # Model not loaded, please click 'Load Model' button
|
| 51 |
|
| 52 |
+
# System message for the Tamil LLaMA model
|
| 53 |
+
system_message = "You are a helpful assistant that provides accurate information in Tamil language."
|
| 54 |
|
| 55 |
+
# Create the prompt using the template from documentation
|
| 56 |
+
prompt_template = f"<|im_start|>system\n{system_message}<|im_end|>\n"
|
| 57 |
|
| 58 |
+
# Process conversation history - chat_history format is list of tuples [(user_msg, bot_msg), ...]
|
| 59 |
+
if chat_history:
|
| 60 |
+
for user_msg, bot_msg in chat_history:
|
| 61 |
+
if user_msg and bot_msg: # Ensure both messages exist
|
| 62 |
+
prompt_template += f"<|im_start|>user\n{user_msg}<|im_end|>\n"
|
| 63 |
+
prompt_template += f"<|im_start|>assistant\n{bot_msg}<|im_end|>\n"
|
| 64 |
|
| 65 |
+
# Add the current user message
|
| 66 |
+
prompt_template += f"<|im_start|>user\n{user_input}<|im_end|>\n"
|
| 67 |
+
prompt_template += "<|im_start|>assistant\n"
|
| 68 |
|
| 69 |
+
try:
|
| 70 |
+
# Tokenize input
|
| 71 |
+
inputs = tokenizer(prompt_template, return_tensors="pt", padding=True)
|
| 72 |
+
|
| 73 |
+
# Generate response with user-specified parameters
|
| 74 |
+
with torch.no_grad():
|
| 75 |
+
output = model.generate(
|
| 76 |
+
inputs["input_ids"],
|
| 77 |
+
attention_mask=inputs["attention_mask"],
|
| 78 |
+
max_new_tokens=256,
|
| 79 |
+
do_sample=True,
|
| 80 |
+
temperature=temperature,
|
| 81 |
+
top_p=top_p,
|
| 82 |
+
top_k=top_k,
|
| 83 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 84 |
+
eos_token_id=tokenizer.encode("<|im_end|>", add_special_tokens=False)[0] if "<|im_end|>" in tokenizer.get_vocab() else tokenizer.eos_token_id
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Decode output
|
| 88 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=False)
|
| 89 |
+
|
| 90 |
+
# Extract just the assistant's response
|
| 91 |
+
response_parts = generated_text.split("<|im_start|>assistant\n")
|
| 92 |
+
if len(response_parts) > 1:
|
| 93 |
+
assistant_response = response_parts[-1].split("<|im_end|>")[0].strip()
|
| 94 |
+
else:
|
| 95 |
+
# Fallback extraction
|
| 96 |
+
assistant_response = generated_text[len(prompt_template):].strip()
|
| 97 |
+
if "<|im_end|>" in assistant_response:
|
| 98 |
+
assistant_response = assistant_response.split("<|im_end|>")[0].strip()
|
| 99 |
|
| 100 |
+
return assistant_response
|
| 101 |
+
except Exception as e:
|
| 102 |
+
print(f"Error generating response: {e}")
|
| 103 |
+
return f"பிழை ஏற்பட்டது. மீண்டும் முயற்சிக்கவும்." # Error occurred, please try again
|
| 104 |
+
|
| 105 |
+
# Function to vote/like a response
|
| 106 |
+
def vote(data, vote_type, model_name):
|
| 107 |
+
# This is a placeholder for the voting functionality
|
| 108 |
+
print(f"Received {vote_type} for response: {data}")
|
| 109 |
+
return data
|
| 110 |
+
|
| 111 |
+
# Create the Gradio interface
|
| 112 |
+
def create_chatbot_interface():
|
| 113 |
+
with gr.Blocks(css="css/index.css") as demo:
|
| 114 |
+
title = "# தமிழ் உரையாடல் பொத்தான் (Tamil Chatbot)"
|
| 115 |
+
description = "Tamil LLaMA 7B Instruct model with user-controlled generation parameters."
|
| 116 |
+
|
| 117 |
+
gr.Markdown(title)
|
| 118 |
+
gr.Markdown(description)
|
| 119 |
+
|
| 120 |
+
# Model loading indicator
|
| 121 |
+
with gr.Row():
|
| 122 |
+
model_status = gr.Markdown("⚠️ மாதிரி ஏற்றப்படவில்லை (Model not loaded)")
|
| 123 |
+
load_model_btn = gr.Button("மாதிரியை ஏற்று (Load Model)")
|
| 124 |
+
|
| 125 |
+
# Model and tokenizer states
|
| 126 |
+
model = gr.State(None)
|
| 127 |
+
tokenizer = gr.State(None)
|
| 128 |
+
|
| 129 |
+
# Parameter sliders
|
| 130 |
+
with gr.Accordion("Generation Parameters", open=False):
|
| 131 |
+
temperature = gr.Slider(
|
| 132 |
+
label="temperature",
|
| 133 |
+
value=0.2,
|
| 134 |
+
minimum=0.0,
|
| 135 |
+
maximum=2.0,
|
| 136 |
+
step=0.05,
|
| 137 |
+
interactive=True,
|
| 138 |
+
info="Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic."
|
| 139 |
+
)
|
| 140 |
|
| 141 |
+
top_p = gr.Slider(
|
| 142 |
+
label="top_p",
|
| 143 |
+
value=1.0,
|
| 144 |
+
minimum=0.0,
|
| 145 |
+
maximum=1.0,
|
| 146 |
+
step=0.01,
|
| 147 |
+
interactive=True,
|
| 148 |
+
info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it"
|
| 149 |
+
)
|
| 150 |
|
| 151 |
+
top_k = gr.Slider(
|
| 152 |
+
label="top_k",
|
| 153 |
+
value=40,
|
| 154 |
+
minimum=0,
|
| 155 |
+
maximum=1000,
|
| 156 |
+
step=1,
|
| 157 |
+
interactive=True,
|
| 158 |
+
info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit."
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Function to load model on button click
|
| 162 |
+
def load_model_fn():
|
| 163 |
+
m, t = initialize_model()
|
| 164 |
+
if m is not None and t is not None:
|
| 165 |
+
return "✅ மாதிரி வெற்றிகரமாக ஏற்றப்பட்டது (Model loaded successfully)", m, t
|
| 166 |
+
else:
|
| 167 |
+
return "❌ மாதிரி ஏற்றுவதில் பிழை (Error loading model)", None, None
|
| 168 |
+
|
| 169 |
+
# Function to respond to user messages - fixed to handle tuples format
|
| 170 |
+
def chat_function(message, history, model_state, tokenizer_state, temp, tp, tk):
|
| 171 |
+
# Check if model is loaded
|
| 172 |
+
if model_state is None:
|
| 173 |
+
bot_message = "மாதிரி ஏற்றப்படவில்லை. முதலில் 'மாதிரியை ஏற்று' பொத்தானைக் கிளிக் செய்யவும்."
|
| 174 |
+
else:
|
| 175 |
+
# Generate bot response with parameters
|
| 176 |
+
bot_message = generate_response(
|
| 177 |
+
model_state,
|
| 178 |
+
tokenizer_state,
|
| 179 |
+
message,
|
| 180 |
+
history, # history already in the correct format
|
| 181 |
+
temperature=temp,
|
| 182 |
+
top_p=tp,
|
| 183 |
+
top_k=tk
|
| 184 |
+
)
|
| 185 |
|
| 186 |
+
# Return the bot's message to be added to history
|
| 187 |
+
return bot_message
|
| 188 |
|
| 189 |
+
# Create the chat interface
|
| 190 |
+
chatbot = gr.Chatbot()
|
| 191 |
+
msg = gr.Textbox(
|
| 192 |
+
show_label=False,
|
| 193 |
+
placeholder="உங்கள் செய்தி இங்கே தட்டச்சு செய்யவும் (Type your message here...)",
|
| 194 |
+
)
|
| 195 |
+
clear = gr.Button("அழி (Clear)")
|
| 196 |
|
| 197 |
+
# Set up the chat interface
|
| 198 |
+
msg.submit(
|
| 199 |
+
chat_function,
|
| 200 |
+
[msg, chatbot, model, tokenizer, temperature, top_p, top_k],
|
| 201 |
+
[chatbot],
|
| 202 |
+
queue=True,
|
| 203 |
+
)
|
| 204 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 205 |
|
| 206 |
+
# Add examples
|
| 207 |
+
examples = gr.Examples(
|
| 208 |
+
examples=[
|
| 209 |
+
"வணக்கம், நீங்கள் யார்?",
|
| 210 |
+
"நான் பெரிய பணக்காரன் இல்லை, லேட்டஸ்ட் iPhone-இல் நிறைய பணம் செலவழிக்க வேண்டுமா?",
|
| 211 |
+
"பட்டியலை வரிசைப்படுத்த பைதான் செயல்பாட்டை எழுதவும்.",
|
| 212 |
+
"சிவப்பும் மஞ்சளும் கலந்தால் என்ன நிறமாக இருக்கும்?",
|
| 213 |
+
"விரைவாக தூங்குவது எப்படி?"
|
| 214 |
+
],
|
| 215 |
+
inputs=msg,
|
| 216 |
+
)
|
| 217 |
|
| 218 |
+
# Connect the model loading button
|
| 219 |
+
load_model_btn.click(
|
| 220 |
+
load_model_fn,
|
| 221 |
+
outputs=[model_status, model, tokenizer]
|
| 222 |
+
)
|
| 223 |
|
| 224 |
+
# Add like functionality
|
| 225 |
+
chatbot.like(vote, None, None)
|
| 226 |
|
| 227 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
|
| 229 |
+
# Create and launch the demo
|
| 230 |
+
demo = create_chatbot_interface()
|
| 231 |
|
| 232 |
+
# Launch the demo
|
| 233 |
+
if __name__ == "__main__":
|
| 234 |
|
|
|
|
| 235 |
|
| 236 |
+
demo.queue(max_size=3).launch()
|
| 237 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
|
|
|
|
|
|
| 239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 240 |
|
| 241 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|