Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,6 +2,13 @@ import os
|
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Define paths for storage - avoid persistent folder issues
|
| 7 |
MODEL_CACHE_DIR = "./model_cache"
|
|
@@ -19,7 +26,7 @@ os.makedirs(TRANSFORMERS_CACHE_DIR, exist_ok=True)
|
|
| 19 |
|
| 20 |
# Initialize the model and tokenizer - only when explicitly requested
|
| 21 |
def initialize_model():
|
| 22 |
-
|
| 23 |
|
| 24 |
try:
|
| 25 |
# Load the tokenizer
|
|
@@ -32,197 +39,246 @@ def initialize_model():
|
|
| 32 |
model = AutoModelForCausalLM.from_pretrained(
|
| 33 |
"abhinand/tamil-llama-7b-instruct-v0.2",
|
| 34 |
device_map="auto",
|
| 35 |
-
torch_dtype=
|
| 36 |
low_cpu_mem_usage=True,
|
| 37 |
cache_dir=MODEL_CACHE_DIR
|
| 38 |
)
|
| 39 |
|
| 40 |
-
|
|
|
|
| 41 |
return model, tokenizer
|
| 42 |
except Exception as e:
|
| 43 |
-
|
| 44 |
return None, None
|
| 45 |
|
| 46 |
# Generate response
|
| 47 |
def generate_response(model, tokenizer, user_input, chat_history, temperature=0.2, top_p=1.0, top_k=40):
|
| 48 |
# Check if model and tokenizer are loaded
|
| 49 |
if model is None or tokenizer is None:
|
| 50 |
-
return "மாதிரி ஏற்றப்படவில்லை. 'மாதிரியை ஏற்று' பொத்தானைக் கிளிக் செய்யவும்." # Model not loaded
|
| 51 |
-
|
| 52 |
-
# System message for the Tamil LLaMA model
|
| 53 |
-
system_message = "You are a helpful assistant that provides accurate information in Tamil language."
|
| 54 |
-
|
| 55 |
-
# Create the prompt using the template from documentation
|
| 56 |
-
prompt_template = f"<|im_start|>system\n{system_message}<|im_end|>\n"
|
| 57 |
-
|
| 58 |
-
# Process conversation history - chat_history format is list of tuples [(user_msg, bot_msg), ...]
|
| 59 |
-
if chat_history:
|
| 60 |
-
for user_msg, bot_msg in chat_history:
|
| 61 |
-
if user_msg and bot_msg: # Ensure both messages exist
|
| 62 |
-
prompt_template += f"<|im_start|>user\n{user_msg}<|im_end|>\n"
|
| 63 |
-
prompt_template += f"<|im_start|>assistant\n{bot_msg}<|im_end|>\n"
|
| 64 |
-
|
| 65 |
-
# Add the current user message
|
| 66 |
-
prompt_template += f"<|im_start|>user\n{user_input}<|im_end|>\n"
|
| 67 |
-
prompt_template += "<|im_start|>assistant\n"
|
| 68 |
|
| 69 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
# Tokenize input
|
| 71 |
-
inputs = tokenizer(
|
| 72 |
input_ids = inputs["input_ids"].to(model.device)
|
| 73 |
attention_mask = inputs["attention_mask"].to(model.device)
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
# Generate response with user-specified parameters
|
| 76 |
with torch.no_grad():
|
| 77 |
-
|
| 78 |
input_ids,
|
| 79 |
attention_mask=attention_mask,
|
| 80 |
-
max_new_tokens=
|
| 81 |
do_sample=True,
|
| 82 |
temperature=temperature,
|
| 83 |
top_p=top_p,
|
| 84 |
top_k=top_k,
|
| 85 |
-
pad_token_id=tokenizer.eos_token_id
|
| 86 |
-
eos_token_id=tokenizer.encode("<|im_end|>", add_special_tokens=False)[0] if "<|im_end|>" in tokenizer.get_vocab() else tokenizer.eos_token_id
|
| 87 |
)
|
| 88 |
|
| 89 |
-
#
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
# Extract the response by removing special tokens
|
| 95 |
-
assistant_response = generated_text.split("<|im_end|>")[0].strip() if "<|im_end|>" in generated_text else generated_text.strip()
|
| 96 |
-
|
| 97 |
-
print(f"Generated response: {assistant_response}") # Debug print
|
| 98 |
-
return assistant_response
|
| 99 |
except Exception as e:
|
| 100 |
-
|
| 101 |
-
return f"பிழை
|
| 102 |
-
|
| 103 |
-
# Function to vote/like a response
|
| 104 |
-
def vote(data, vote_type, model_name):
|
| 105 |
-
# This is a placeholder for the voting functionality
|
| 106 |
-
print(f"Received {vote_type} for response: {data}")
|
| 107 |
-
return data
|
| 108 |
|
| 109 |
# Create the Gradio interface
|
| 110 |
def create_chatbot_interface():
|
| 111 |
-
with gr.Blocks(
|
| 112 |
title = "# தமிழ் உரையாடல் பொத்தான் (Tamil Chatbot)"
|
| 113 |
description = "Tamil LLaMA 7B Instruct model with user-controlled generation parameters."
|
| 114 |
|
| 115 |
gr.Markdown(title)
|
| 116 |
gr.Markdown(description)
|
| 117 |
|
| 118 |
-
#
|
| 119 |
-
with gr.
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
minimum=0.0,
|
| 143 |
-
maximum=1.0,
|
| 144 |
-
step=0.01,
|
| 145 |
-
interactive=True,
|
| 146 |
-
info="0.1 means only the tokens comprising the top 10% probability mass are considered. Suggest set to 1 and use temperature. 1 means 100% and will disable it"
|
| 147 |
)
|
| 148 |
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
maximum=1000,
|
| 154 |
-
step=1,
|
| 155 |
-
interactive=True,
|
| 156 |
-
info="limits candidate tokens to a fixed number after sorting by probability. Setting it higher than the vocabulary size deactivates this limit."
|
| 157 |
)
|
| 158 |
|
| 159 |
-
#
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
)
|
| 183 |
|
| 184 |
-
#
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 226 |
return demo
|
| 227 |
|
| 228 |
# Create and launch the demo
|
|
@@ -230,4 +286,4 @@ demo = create_chatbot_interface()
|
|
| 230 |
|
| 231 |
# Launch the demo
|
| 232 |
if __name__ == "__main__":
|
| 233 |
-
demo.queue(
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
import torch
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
# Set up logging
|
| 8 |
+
logging.basicConfig(level=logging.INFO,
|
| 9 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 10 |
+
handlers=[logging.StreamHandler()])
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
|
| 13 |
# Define paths for storage - avoid persistent folder issues
|
| 14 |
MODEL_CACHE_DIR = "./model_cache"
|
|
|
|
| 26 |
|
| 27 |
# Initialize the model and tokenizer - only when explicitly requested
|
| 28 |
def initialize_model():
|
| 29 |
+
logger.info("Loading model and tokenizer... This may take a few minutes.")
|
| 30 |
|
| 31 |
try:
|
| 32 |
# Load the tokenizer
|
|
|
|
| 39 |
model = AutoModelForCausalLM.from_pretrained(
|
| 40 |
"abhinand/tamil-llama-7b-instruct-v0.2",
|
| 41 |
device_map="auto",
|
| 42 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 43 |
low_cpu_mem_usage=True,
|
| 44 |
cache_dir=MODEL_CACHE_DIR
|
| 45 |
)
|
| 46 |
|
| 47 |
+
logger.info(f"Model device: {next(model.parameters()).device}")
|
| 48 |
+
logger.info("Model and tokenizer loaded successfully!")
|
| 49 |
return model, tokenizer
|
| 50 |
except Exception as e:
|
| 51 |
+
logger.error(f"Error loading model: {e}")
|
| 52 |
return None, None
|
| 53 |
|
| 54 |
# Generate response
|
| 55 |
def generate_response(model, tokenizer, user_input, chat_history, temperature=0.2, top_p=1.0, top_k=40):
|
| 56 |
# Check if model and tokenizer are loaded
|
| 57 |
if model is None or tokenizer is None:
|
| 58 |
+
return "மாதிரி ஏற்றப்படவில்லை. 'மாதிரியை ஏற்று' பொத்தானைக் கிளிக் செய்யவும்." # Model not loaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
try:
|
| 61 |
+
logger.info(f"Generating response for input: {user_input[:50]}...")
|
| 62 |
+
|
| 63 |
+
# Simple prompt approach to test basic generation
|
| 64 |
+
prompt = f"<|im_start|>user\n{user_input}<|im_end|>\n<|im_start|>assistant\n"
|
| 65 |
+
|
| 66 |
# Tokenize input
|
| 67 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 68 |
input_ids = inputs["input_ids"].to(model.device)
|
| 69 |
attention_mask = inputs["attention_mask"].to(model.device)
|
| 70 |
|
| 71 |
+
# Debug info
|
| 72 |
+
logger.info(f"Input shape: {input_ids.shape}")
|
| 73 |
+
logger.info(f"Device: {input_ids.device}")
|
| 74 |
+
|
| 75 |
# Generate response with user-specified parameters
|
| 76 |
with torch.no_grad():
|
| 77 |
+
output_ids = model.generate(
|
| 78 |
input_ids,
|
| 79 |
attention_mask=attention_mask,
|
| 80 |
+
max_new_tokens=100, # Start with a smaller value for testing
|
| 81 |
do_sample=True,
|
| 82 |
temperature=temperature,
|
| 83 |
top_p=top_p,
|
| 84 |
top_k=top_k,
|
| 85 |
+
pad_token_id=tokenizer.eos_token_id
|
|
|
|
| 86 |
)
|
| 87 |
|
| 88 |
+
# Get only the generated part
|
| 89 |
+
new_tokens = output_ids[0, input_ids.shape[1]:]
|
| 90 |
+
response = tokenizer.decode(new_tokens, skip_special_tokens=True)
|
| 91 |
+
|
| 92 |
+
logger.info(f"Generated response (raw): {response}")
|
| 93 |
+
|
| 94 |
+
# Clean up response if needed
|
| 95 |
+
if "<|im_end|>" in response:
|
| 96 |
+
response = response.split("<|im_end|>")[0].strip()
|
| 97 |
+
|
| 98 |
+
logger.info(f"Final response: {response}")
|
| 99 |
+
|
| 100 |
+
# Fallback if empty response
|
| 101 |
+
if not response or response.isspace():
|
| 102 |
+
logger.warning("Empty response generated, returning fallback message")
|
| 103 |
+
return "வருந்துகிறேன், பதிலை உருவாக்குவதில் சிக்கல் உள்ளது. மீண்டும் முயற்சிக்கவும்." # Sorry, there was a problem generating a response
|
| 104 |
+
|
| 105 |
+
return response
|
| 106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
except Exception as e:
|
| 108 |
+
logger.error(f"Error generating response: {e}", exc_info=True)
|
| 109 |
+
return f"பிழை ஏற்பட்டது: {str(e)}" # Error occurred
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
# Create the Gradio interface
|
| 112 |
def create_chatbot_interface():
|
| 113 |
+
with gr.Blocks() as demo:
|
| 114 |
title = "# தமிழ் உரையாடல் பொத்தான் (Tamil Chatbot)"
|
| 115 |
description = "Tamil LLaMA 7B Instruct model with user-controlled generation parameters."
|
| 116 |
|
| 117 |
gr.Markdown(title)
|
| 118 |
gr.Markdown(description)
|
| 119 |
|
| 120 |
+
# Add a direct testing area to debug the model
|
| 121 |
+
with gr.Tab("Debug Mode"):
|
| 122 |
+
with gr.Row():
|
| 123 |
+
debug_status = gr.Markdown("⚠️ Debug Mode - Model not loaded")
|
| 124 |
+
debug_load_model_btn = gr.Button("Load Model (Debug)")
|
| 125 |
+
|
| 126 |
+
debug_model = gr.State(None)
|
| 127 |
+
debug_tokenizer = gr.State(None)
|
| 128 |
+
|
| 129 |
+
with gr.Row():
|
| 130 |
+
with gr.Column(scale=3):
|
| 131 |
+
debug_input = gr.Textbox(label="Input Text", lines=3)
|
| 132 |
+
debug_submit = gr.Button("Generate Response")
|
| 133 |
+
with gr.Column(scale=3):
|
| 134 |
+
debug_output = gr.Textbox(label="Raw Output", lines=8)
|
| 135 |
+
|
| 136 |
+
def debug_load_model_fn():
|
| 137 |
+
m, t = initialize_model()
|
| 138 |
+
if m is not None and t is not None:
|
| 139 |
+
return "✅ Debug Model loaded", m, t
|
| 140 |
+
else:
|
| 141 |
+
return "❌ Debug Model loading failed", None, None
|
| 142 |
+
|
| 143 |
+
def debug_generate(input_text, model, tokenizer):
|
| 144 |
+
if model is None:
|
| 145 |
+
return "Model not loaded yet. Please load the model first."
|
| 146 |
+
|
| 147 |
+
try:
|
| 148 |
+
# Simple direct generation for testing
|
| 149 |
+
prompt = f"<|im_start|>user\n{input_text}<|im_end|>\n<|im_start|>assistant\n"
|
| 150 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 151 |
+
|
| 152 |
+
with torch.no_grad():
|
| 153 |
+
output_ids = model.generate(
|
| 154 |
+
inputs["input_ids"],
|
| 155 |
+
max_new_tokens=100,
|
| 156 |
+
temperature=0.2,
|
| 157 |
+
do_sample=True
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
full_output = tokenizer.decode(output_ids[0], skip_special_tokens=False)
|
| 161 |
+
response = full_output[len(prompt):]
|
| 162 |
+
|
| 163 |
+
# Log the full output for debugging
|
| 164 |
+
logger.info(f"Debug full output: {full_output}")
|
| 165 |
+
|
| 166 |
+
return f"FULL OUTPUT:\n{full_output}\n\nEXTRACTED:\n{response}"
|
| 167 |
+
except Exception as e:
|
| 168 |
+
logger.error(f"Debug error: {e}", exc_info=True)
|
| 169 |
+
return f"Error: {str(e)}"
|
| 170 |
|
| 171 |
+
debug_load_model_btn.click(
|
| 172 |
+
debug_load_model_fn,
|
| 173 |
+
outputs=[debug_status, debug_model, debug_tokenizer]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
)
|
| 175 |
|
| 176 |
+
debug_submit.click(
|
| 177 |
+
debug_generate,
|
| 178 |
+
inputs=[debug_input, debug_model, debug_tokenizer],
|
| 179 |
+
outputs=[debug_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
)
|
| 181 |
|
| 182 |
+
# Regular chatbot interface
|
| 183 |
+
with gr.Tab("Chatbot"):
|
| 184 |
+
# Model loading indicator
|
| 185 |
+
with gr.Row():
|
| 186 |
+
model_status = gr.Markdown("⚠️ மாதிரி ஏற்றப்படவில்லை (Model not loaded)")
|
| 187 |
+
load_model_btn = gr.Button("மாதிரியை ஏற்று (Load Model)")
|
| 188 |
+
|
| 189 |
+
# Model and tokenizer states
|
| 190 |
+
model = gr.State(None)
|
| 191 |
+
tokenizer = gr.State(None)
|
| 192 |
+
|
| 193 |
+
# Parameter sliders
|
| 194 |
+
with gr.Accordion("Generation Parameters", open=False):
|
| 195 |
+
temperature = gr.Slider(
|
| 196 |
+
label="temperature",
|
| 197 |
+
value=0.2,
|
| 198 |
+
minimum=0.0,
|
| 199 |
+
maximum=2.0,
|
| 200 |
+
step=0.05,
|
| 201 |
+
interactive=True
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
top_p = gr.Slider(
|
| 205 |
+
label="top_p",
|
| 206 |
+
value=1.0,
|
| 207 |
+
minimum=0.0,
|
| 208 |
+
maximum=1.0,
|
| 209 |
+
step=0.01,
|
| 210 |
+
interactive=True
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
top_k = gr.Slider(
|
| 214 |
+
label="top_k",
|
| 215 |
+
value=40,
|
| 216 |
+
minimum=0,
|
| 217 |
+
maximum=1000,
|
| 218 |
+
step=1,
|
| 219 |
+
interactive=True
|
| 220 |
)
|
| 221 |
|
| 222 |
+
# Function to load model on button click
|
| 223 |
+
def load_model_fn():
|
| 224 |
+
m, t = initialize_model()
|
| 225 |
+
if m is not None and t is not None:
|
| 226 |
+
return "✅ மாதிரி வெற்றிகரமாக ஏற்றப்பட்டது (Model loaded successfully)", m, t
|
| 227 |
+
else:
|
| 228 |
+
return "❌ மாதிரி ஏற்றுவதில் பிழை (Error loading model)", None, None
|
| 229 |
+
|
| 230 |
+
# Function to respond to user messages - with error handling
|
| 231 |
+
def chat_function(message, history, model_state, tokenizer_state, temp, tp, tk):
|
| 232 |
+
if not message.strip():
|
| 233 |
+
return "", history
|
| 234 |
+
|
| 235 |
+
try:
|
| 236 |
+
# Check if model is loaded
|
| 237 |
+
if model_state is None:
|
| 238 |
+
bot_message = "மாதிரி ஏற்றப்படவில்லை. முதலில் 'மாதிரியை ஏற்று' பொத்தானைக் கிளிக் செய்யவும்."
|
| 239 |
+
else:
|
| 240 |
+
# Generate bot response with parameters
|
| 241 |
+
bot_message = generate_response(
|
| 242 |
+
model_state,
|
| 243 |
+
tokenizer_state,
|
| 244 |
+
message,
|
| 245 |
+
history,
|
| 246 |
+
temperature=temp,
|
| 247 |
+
top_p=tp,
|
| 248 |
+
top_k=tk
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
# Create new history entry
|
| 252 |
+
new_history = history + [(message, bot_message)]
|
| 253 |
+
return "", new_history
|
| 254 |
+
|
| 255 |
+
except Exception as e:
|
| 256 |
+
logger.error(f"Chat function error: {e}", exc_info=True)
|
| 257 |
+
return "", history + [(message, f"Error: {str(e)}")]
|
| 258 |
+
|
| 259 |
+
# Create the chat interface
|
| 260 |
+
chatbot = gr.Chatbot()
|
| 261 |
+
msg = gr.TextArea(
|
| 262 |
+
placeholder="உங்கள் செய்தி இங்கே தட்டச்சு செய்யவும் (Type your message here...)",
|
| 263 |
+
lines=3
|
| 264 |
+
)
|
| 265 |
+
clear = gr.Button("அழி (Clear)")
|
| 266 |
+
|
| 267 |
+
# Set up the chat interface
|
| 268 |
+
msg.submit(
|
| 269 |
+
chat_function,
|
| 270 |
+
[msg, chatbot, model, tokenizer, temperature, top_p, top_k],
|
| 271 |
+
[msg, chatbot]
|
| 272 |
+
)
|
| 273 |
+
|
| 274 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 275 |
+
|
| 276 |
+
# Connect the model loading button
|
| 277 |
+
load_model_btn.click(
|
| 278 |
+
load_model_fn,
|
| 279 |
+
outputs=[model_status, model, tokenizer]
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
return demo
|
| 283 |
|
| 284 |
# Create and launch the demo
|
|
|
|
| 286 |
|
| 287 |
# Launch the demo
|
| 288 |
if __name__ == "__main__":
|
| 289 |
+
demo.queue(concurrency_count=1).launch()
|