Spaces:
No application file
No application file
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| # Load a SMALL and FAST model | |
| print("Loading AI model...") | |
| model_name = "microsoft/DialoGPT-small" # Small = Fast! | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| print("Model loaded!") | |
| # Store chat history for context | |
| chat_history_ids = None | |
| def chat(message, history): | |
| """ | |
| Fast AI chat using DialoGPT-small model. | |
| """ | |
| global chat_history_ids | |
| try: | |
| # Encode user input | |
| new_input_ids = tokenizer.encode(message + tokenizer.eos_token, return_tensors='pt') | |
| # Append to chat history or start fresh | |
| if chat_history_ids is not None and len(history) > 0: | |
| bot_input_ids = torch.cat([chat_history_ids, new_input_ids], dim=-1) | |
| else: | |
| bot_input_ids = new_input_ids | |
| # Generate response (fast settings) | |
| chat_history_ids = model.generate( | |
| bot_input_ids, | |
| max_length=200, | |
| pad_token_id=tokenizer.eos_token_id, | |
| do_sample=True, | |
| top_k=50, | |
| temperature=0.7 | |
| ) | |
| # Decode response | |
| response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) | |
| return response if response.strip() else "Hmm, let me think... Could you say that differently?" | |
| except Exception as e: | |
| chat_history_ids = None # Reset on error | |
| return f"Let me try again: {str(e)}" | |
| # Create Gradio Chat Interface | |
| demo = gr.ChatInterface( | |
| fn=chat, | |
| title="π€ AI Chat Assistant", | |
| description="Fast AI Chat - Powered by DialoGPT", | |
| examples=["Hello!", "Tell me a joke", "How are you?", "What's your name?"] | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |