Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
"""
|
| 2 |
Hugging Face Spaces App for Kolam AI Generator
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
|
| 6 |
import gradio as gr
|
|
@@ -8,10 +8,9 @@ import torch
|
|
| 8 |
import numpy as np
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
from PIL import Image
|
| 11 |
-
import io
|
| 12 |
-
import base64
|
| 13 |
from pathlib import Path
|
| 14 |
import sys
|
|
|
|
| 15 |
|
| 16 |
# Add project paths
|
| 17 |
sys.path.insert(0, str(Path(__file__).parent.parent))
|
|
@@ -21,6 +20,7 @@ from models.gan_generator import KolamGenerator
|
|
| 21 |
from models.gan_discriminator import KolamDiscriminator
|
| 22 |
from utils.metrics import KolamDesignMetrics
|
| 23 |
|
|
|
|
| 24 |
class KolamAIGenerator:
|
| 25 |
def __init__(self):
|
| 26 |
"""Initialize the Kolam AI Generator."""
|
|
@@ -45,100 +45,105 @@ class KolamAIGenerator:
|
|
| 45 |
image_size=64
|
| 46 |
)
|
| 47 |
|
| 48 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
self.generator.eval()
|
| 50 |
self.discriminator.eval()
|
| 51 |
|
| 52 |
-
print("β
Models loaded successfully!")
|
| 53 |
-
|
| 54 |
except Exception as e:
|
| 55 |
print(f"β Error loading models: {e}")
|
| 56 |
-
# Create dummy models for demo
|
| 57 |
self.generator = KolamGenerator(100, 128, 1, 64)
|
| 58 |
self.generator.eval()
|
| 59 |
|
| 60 |
-
def generate_kolam(self, complexity, symmetry, seed=None):
|
| 61 |
"""Generate a Kolam design with specified parameters."""
|
| 62 |
try:
|
| 63 |
-
# Set random seed
|
| 64 |
if seed is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
torch.manual_seed(seed)
|
| 66 |
np.random.seed(seed)
|
| 67 |
|
| 68 |
# Generate random noise
|
| 69 |
-
noise = torch.randn(1,
|
| 70 |
|
| 71 |
# Adjust noise based on complexity
|
| 72 |
if complexity == "Simple":
|
| 73 |
noise = noise * 0.5
|
|
|
|
|
|
|
| 74 |
elif complexity == "Complex":
|
| 75 |
-
noise = noise * 1.5
|
| 76 |
|
| 77 |
# Generate Kolam
|
| 78 |
with torch.no_grad():
|
| 79 |
generated_kolam = self.generator(noise)
|
| 80 |
|
| 81 |
-
# Convert to numpy
|
| 82 |
kolam_image = generated_kolam.squeeze().cpu().numpy()
|
| 83 |
-
kolam_image = (kolam_image + 1) / 2
|
| 84 |
kolam_image = np.clip(kolam_image, 0, 1)
|
| 85 |
|
| 86 |
-
# Apply symmetry
|
| 87 |
if symmetry == "High":
|
| 88 |
-
# Enhance symmetry
|
| 89 |
kolam_image = self.enhance_symmetry(kolam_image)
|
| 90 |
|
| 91 |
# Convert to PIL Image
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
return kolam_pil
|
| 95 |
|
| 96 |
except Exception as e:
|
| 97 |
print(f"β Error generating Kolam: {e}")
|
| 98 |
-
# Return a simple pattern as fallback
|
| 99 |
return self.create_fallback_pattern()
|
| 100 |
|
| 101 |
def enhance_symmetry(self, image):
|
| 102 |
-
"""Enhance
|
| 103 |
-
#
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
image[:, image.shape[1]//2:] = right_half
|
| 107 |
|
| 108 |
-
#
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
image[image.shape[0]//2:, :] = bottom_half
|
| 112 |
|
| 113 |
-
return
|
| 114 |
|
| 115 |
def create_fallback_pattern(self):
|
| 116 |
-
"""
|
| 117 |
-
# Create a simple geometric pattern
|
| 118 |
size = 64
|
| 119 |
pattern = np.zeros((size, size), dtype=np.float32)
|
| 120 |
-
|
| 121 |
-
# Draw concentric circles
|
| 122 |
center = size // 2
|
| 123 |
for radius in range(5, center, 8):
|
| 124 |
y, x = np.ogrid[:size, :size]
|
| 125 |
mask = (x - center)**2 + (y - center)**2 <= radius**2
|
| 126 |
pattern[mask] = 1.0
|
| 127 |
-
|
| 128 |
return Image.fromarray((pattern * 255).astype(np.uint8), mode='L')
|
| 129 |
|
| 130 |
def analyze_quality(self, image):
|
| 131 |
"""Analyze the quality of the generated Kolam."""
|
| 132 |
try:
|
| 133 |
-
# Convert PIL to numpy
|
| 134 |
if isinstance(image, Image.Image):
|
| 135 |
image_array = np.array(image) / 255.0
|
| 136 |
else:
|
| 137 |
image_array = image
|
| 138 |
-
|
| 139 |
-
# Calculate quality metrics
|
| 140 |
quality = self.metrics.calculate_overall_quality(image_array)
|
| 141 |
-
|
| 142 |
return {
|
| 143 |
"Overall Quality": f"{quality['overall_quality']:.3f}",
|
| 144 |
"Horizontal Symmetry": f"{quality['horizontal']:.3f}",
|
|
@@ -147,173 +152,60 @@ class KolamAIGenerator:
|
|
| 147 |
"Balance": f"{quality['balance']:.3f}",
|
| 148 |
"Rhythm": f"{quality['rhythm']:.3f}"
|
| 149 |
}
|
| 150 |
-
|
| 151 |
except Exception as e:
|
| 152 |
print(f"β Error analyzing quality: {e}")
|
| 153 |
-
return {
|
| 154 |
-
"Overall Quality"
|
| 155 |
-
"
|
| 156 |
-
"
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
"Rhythm": "N/A"
|
| 160 |
-
}
|
| 161 |
|
| 162 |
# Initialize the generator
|
| 163 |
kolam_ai = KolamAIGenerator()
|
| 164 |
|
| 165 |
def generate_and_analyze(complexity, symmetry, seed):
|
| 166 |
-
|
| 167 |
-
# Generate Kolam
|
| 168 |
-
kolam_image = kolam_ai.generate_kolam(complexity, symmetry, seed)
|
| 169 |
-
|
| 170 |
-
# Analyze quality
|
| 171 |
quality_metrics = kolam_ai.analyze_quality(kolam_image)
|
| 172 |
-
|
| 173 |
return kolam_image, quality_metrics
|
| 174 |
|
|
|
|
| 175 |
def create_interface():
|
| 176 |
-
"""Create the Gradio interface."""
|
| 177 |
-
|
| 178 |
-
# Custom CSS for better styling
|
| 179 |
css = """
|
| 180 |
-
.gradio-container {
|
| 181 |
-
|
| 182 |
-
}
|
| 183 |
-
.title {
|
| 184 |
-
text-align: center;
|
| 185 |
-
color: #2E86AB;
|
| 186 |
-
margin-bottom: 20px;
|
| 187 |
-
}
|
| 188 |
-
.description {
|
| 189 |
-
text-align: center;
|
| 190 |
-
color: #666;
|
| 191 |
-
margin-bottom: 30px;
|
| 192 |
-
}
|
| 193 |
"""
|
| 194 |
|
| 195 |
with gr.Blocks(css=css, title="Kolam AI Generator") as interface:
|
| 196 |
-
|
| 197 |
-
# Header
|
| 198 |
gr.HTML("""
|
| 199 |
<div class="title">
|
| 200 |
<h1>π¨ Kolam AI Generator</h1>
|
| 201 |
-
<p class="description">
|
| 202 |
-
Generate beautiful traditional Indian Kolam designs using AI
|
| 203 |
-
</p>
|
| 204 |
</div>
|
| 205 |
""")
|
| 206 |
|
| 207 |
with gr.Row():
|
| 208 |
with gr.Column(scale=1):
|
| 209 |
-
|
| 210 |
-
gr.
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
value="Medium",
|
| 215 |
-
label="Pattern Complexity",
|
| 216 |
-
info="Controls the intricacy of the design"
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
symmetry = gr.Dropdown(
|
| 220 |
-
choices=["Low", "Medium", "High"],
|
| 221 |
-
value="Medium",
|
| 222 |
-
label="Symmetry Level",
|
| 223 |
-
info="Controls the geometric balance"
|
| 224 |
-
)
|
| 225 |
-
|
| 226 |
-
seed = gr.Number(
|
| 227 |
-
value=None,
|
| 228 |
-
label="Random Seed (Optional)",
|
| 229 |
-
info="Set a seed for reproducible results"
|
| 230 |
-
)
|
| 231 |
-
|
| 232 |
-
generate_btn = gr.Button(
|
| 233 |
-
"π¨ Generate Kolam",
|
| 234 |
-
variant="primary",
|
| 235 |
-
size="lg"
|
| 236 |
-
)
|
| 237 |
|
| 238 |
with gr.Column(scale=2):
|
| 239 |
-
# Output
|
| 240 |
gr.Markdown("### πΌοΈ Generated Kolam")
|
| 241 |
-
|
| 242 |
-
output_image = gr.Image(
|
| 243 |
-
label="Generated Design",
|
| 244 |
-
type="pil",
|
| 245 |
-
height=400
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
# Quality metrics
|
| 249 |
gr.Markdown("### π Quality Analysis")
|
| 250 |
-
|
| 251 |
-
quality_output = gr.JSON(
|
| 252 |
-
label="Design Quality Metrics",
|
| 253 |
-
value={}
|
| 254 |
-
)
|
| 255 |
-
|
| 256 |
-
# Examples
|
| 257 |
-
gr.Markdown("### π Example Generations")
|
| 258 |
-
|
| 259 |
-
examples = gr.Examples(
|
| 260 |
-
examples=[
|
| 261 |
-
["Simple", "High", 42],
|
| 262 |
-
["Medium", "Medium", 123],
|
| 263 |
-
["Complex", "Low", 456],
|
| 264 |
-
["Complex", "High", 789]
|
| 265 |
-
],
|
| 266 |
-
inputs=[complexity, symmetry, seed],
|
| 267 |
-
label="Try these examples:"
|
| 268 |
-
)
|
| 269 |
-
|
| 270 |
-
# Information section
|
| 271 |
-
with gr.Accordion("βΉοΈ About Kolam AI Generator", open=False):
|
| 272 |
-
gr.Markdown("""
|
| 273 |
-
## What is Kolam?
|
| 274 |
-
Kolam is a traditional Indian floor art created using rice flour, chalk, or colored powders.
|
| 275 |
-
It features intricate geometric designs and is used in daily rituals and festivals.
|
| 276 |
-
|
| 277 |
-
## How it Works
|
| 278 |
-
- **Generator Network**: Creates Kolam designs from random noise
|
| 279 |
-
- **Discriminator Network**: Ensures realistic pattern generation
|
| 280 |
-
- **Quality Metrics**: Analyzes symmetry, complexity, and balance
|
| 281 |
-
|
| 282 |
-
## Technical Details
|
| 283 |
-
- **Framework**: PyTorch
|
| 284 |
-
- **Architecture**: Generative Adversarial Network (GAN)
|
| 285 |
-
- **Input**: Random noise (100 dimensions)
|
| 286 |
-
- **Output**: 64x64 grayscale Kolam image
|
| 287 |
-
- **Generation Time**: <1 second
|
| 288 |
-
|
| 289 |
-
## Quality Metrics
|
| 290 |
-
- **Symmetry**: Horizontal and vertical balance
|
| 291 |
-
- **Complexity**: Pattern intricacy and density
|
| 292 |
-
- **Balance**: Visual weight distribution
|
| 293 |
-
- **Rhythm**: Pattern repetition and flow
|
| 294 |
-
""")
|
| 295 |
|
| 296 |
-
|
| 297 |
-
generate_btn.click(
|
| 298 |
-
fn=generate_and_analyze,
|
| 299 |
-
inputs=[complexity, symmetry, seed],
|
| 300 |
-
outputs=[output_image, quality_output]
|
| 301 |
-
)
|
| 302 |
|
| 303 |
-
|
| 304 |
-
interface.load(
|
| 305 |
-
fn=lambda: generate_and_analyze("Medium", "Medium", None),
|
| 306 |
-
outputs=[output_image, quality_output]
|
| 307 |
-
)
|
| 308 |
|
| 309 |
return interface
|
| 310 |
|
| 311 |
-
|
| 312 |
if __name__ == "__main__":
|
| 313 |
interface = create_interface()
|
| 314 |
-
interface.launch(
|
| 315 |
-
server_name="0.0.0.0",
|
| 316 |
-
server_port=7860,
|
| 317 |
-
share=True,
|
| 318 |
-
show_error=True
|
| 319 |
-
)
|
|
|
|
| 1 |
"""
|
| 2 |
Hugging Face Spaces App for Kolam AI Generator
|
| 3 |
+
Improved version: more beautiful & diverse Kolams
|
| 4 |
"""
|
| 5 |
|
| 6 |
import gradio as gr
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
import matplotlib.pyplot as plt
|
| 10 |
from PIL import Image
|
|
|
|
|
|
|
| 11 |
from pathlib import Path
|
| 12 |
import sys
|
| 13 |
+
import matplotlib.cm as cm # for color mapping
|
| 14 |
|
| 15 |
# Add project paths
|
| 16 |
sys.path.insert(0, str(Path(__file__).parent.parent))
|
|
|
|
| 20 |
from models.gan_discriminator import KolamDiscriminator
|
| 21 |
from utils.metrics import KolamDesignMetrics
|
| 22 |
|
| 23 |
+
|
| 24 |
class KolamAIGenerator:
|
| 25 |
def __init__(self):
|
| 26 |
"""Initialize the Kolam AI Generator."""
|
|
|
|
| 45 |
image_size=64
|
| 46 |
)
|
| 47 |
|
| 48 |
+
# Try to load pretrained weights
|
| 49 |
+
weights_path = Path("models/generator.pth")
|
| 50 |
+
if weights_path.exists():
|
| 51 |
+
self.generator.load_state_dict(
|
| 52 |
+
torch.load(weights_path, map_location="cpu")
|
| 53 |
+
)
|
| 54 |
+
print("β
Loaded pretrained generator weights!")
|
| 55 |
+
else:
|
| 56 |
+
print("β οΈ No pretrained weights found, using untrained model.")
|
| 57 |
+
|
| 58 |
+
# Set eval mode
|
| 59 |
self.generator.eval()
|
| 60 |
self.discriminator.eval()
|
| 61 |
|
|
|
|
|
|
|
| 62 |
except Exception as e:
|
| 63 |
print(f"β Error loading models: {e}")
|
|
|
|
| 64 |
self.generator = KolamGenerator(100, 128, 1, 64)
|
| 65 |
self.generator.eval()
|
| 66 |
|
| 67 |
+
def generate_kolam(self, complexity, symmetry, seed=None, use_color=True):
|
| 68 |
"""Generate a Kolam design with specified parameters."""
|
| 69 |
try:
|
| 70 |
+
# Set random seed
|
| 71 |
if seed is not None:
|
| 72 |
+
torch.manual_seed(int(seed))
|
| 73 |
+
np.random.seed(int(seed))
|
| 74 |
+
else:
|
| 75 |
+
seed = np.random.randint(0, 100000)
|
| 76 |
torch.manual_seed(seed)
|
| 77 |
np.random.seed(seed)
|
| 78 |
|
| 79 |
# Generate random noise
|
| 80 |
+
noise = torch.randn(1, 100)
|
| 81 |
|
| 82 |
# Adjust noise based on complexity
|
| 83 |
if complexity == "Simple":
|
| 84 |
noise = noise * 0.5
|
| 85 |
+
elif complexity == "Medium":
|
| 86 |
+
noise = noise * 1.0 + torch.randn_like(noise) * 0.3
|
| 87 |
elif complexity == "Complex":
|
| 88 |
+
noise = noise * 1.5 + torch.randn_like(noise) * 0.5
|
| 89 |
|
| 90 |
# Generate Kolam
|
| 91 |
with torch.no_grad():
|
| 92 |
generated_kolam = self.generator(noise)
|
| 93 |
|
| 94 |
+
# Convert to numpy [0,1]
|
| 95 |
kolam_image = generated_kolam.squeeze().cpu().numpy()
|
| 96 |
+
kolam_image = (kolam_image + 1) / 2
|
| 97 |
kolam_image = np.clip(kolam_image, 0, 1)
|
| 98 |
|
| 99 |
+
# Apply symmetry
|
| 100 |
if symmetry == "High":
|
|
|
|
| 101 |
kolam_image = self.enhance_symmetry(kolam_image)
|
| 102 |
|
| 103 |
# Convert to PIL Image
|
| 104 |
+
if use_color:
|
| 105 |
+
kolam_colored = cm.viridis(kolam_image)[:, :, :3] # RGB colormap
|
| 106 |
+
kolam_pil = Image.fromarray((kolam_colored * 255).astype(np.uint8))
|
| 107 |
+
else:
|
| 108 |
+
kolam_pil = Image.fromarray((kolam_image * 255).astype(np.uint8), mode='L')
|
| 109 |
|
| 110 |
return kolam_pil
|
| 111 |
|
| 112 |
except Exception as e:
|
| 113 |
print(f"β Error generating Kolam: {e}")
|
|
|
|
| 114 |
return self.create_fallback_pattern()
|
| 115 |
|
| 116 |
def enhance_symmetry(self, image):
|
| 117 |
+
"""Enhance symmetry with mirror + rotation."""
|
| 118 |
+
# Horizontal + vertical flip
|
| 119 |
+
img_sym = (image + np.fliplr(image)) / 2
|
| 120 |
+
img_sym = (img_sym + np.flipud(img_sym)) / 2
|
|
|
|
| 121 |
|
| 122 |
+
# Add rotational symmetry (90 degrees)
|
| 123 |
+
rotated = np.rot90(image)
|
| 124 |
+
img_sym = (img_sym + rotated) / 2
|
|
|
|
| 125 |
|
| 126 |
+
return np.clip(img_sym, 0, 1)
|
| 127 |
|
| 128 |
def create_fallback_pattern(self):
|
| 129 |
+
"""Fallback: simple geometric pattern."""
|
|
|
|
| 130 |
size = 64
|
| 131 |
pattern = np.zeros((size, size), dtype=np.float32)
|
|
|
|
|
|
|
| 132 |
center = size // 2
|
| 133 |
for radius in range(5, center, 8):
|
| 134 |
y, x = np.ogrid[:size, :size]
|
| 135 |
mask = (x - center)**2 + (y - center)**2 <= radius**2
|
| 136 |
pattern[mask] = 1.0
|
|
|
|
| 137 |
return Image.fromarray((pattern * 255).astype(np.uint8), mode='L')
|
| 138 |
|
| 139 |
def analyze_quality(self, image):
|
| 140 |
"""Analyze the quality of the generated Kolam."""
|
| 141 |
try:
|
|
|
|
| 142 |
if isinstance(image, Image.Image):
|
| 143 |
image_array = np.array(image) / 255.0
|
| 144 |
else:
|
| 145 |
image_array = image
|
|
|
|
|
|
|
| 146 |
quality = self.metrics.calculate_overall_quality(image_array)
|
|
|
|
| 147 |
return {
|
| 148 |
"Overall Quality": f"{quality['overall_quality']:.3f}",
|
| 149 |
"Horizontal Symmetry": f"{quality['horizontal']:.3f}",
|
|
|
|
| 152 |
"Balance": f"{quality['balance']:.3f}",
|
| 153 |
"Rhythm": f"{quality['rhythm']:.3f}"
|
| 154 |
}
|
|
|
|
| 155 |
except Exception as e:
|
| 156 |
print(f"β Error analyzing quality: {e}")
|
| 157 |
+
return {k: "N/A" for k in [
|
| 158 |
+
"Overall Quality", "Horizontal Symmetry",
|
| 159 |
+
"Vertical Symmetry", "Complexity",
|
| 160 |
+
"Balance", "Rhythm"
|
| 161 |
+
]}
|
| 162 |
+
|
|
|
|
|
|
|
| 163 |
|
| 164 |
# Initialize the generator
|
| 165 |
kolam_ai = KolamAIGenerator()
|
| 166 |
|
| 167 |
def generate_and_analyze(complexity, symmetry, seed):
|
| 168 |
+
kolam_image = kolam_ai.generate_kolam(complexity, symmetry, seed, use_color=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
quality_metrics = kolam_ai.analyze_quality(kolam_image)
|
|
|
|
| 170 |
return kolam_image, quality_metrics
|
| 171 |
|
| 172 |
+
|
| 173 |
def create_interface():
|
|
|
|
|
|
|
|
|
|
| 174 |
css = """
|
| 175 |
+
.gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; }
|
| 176 |
+
.title { text-align: center; color: #2E86AB; margin-bottom: 20px; }
|
| 177 |
+
.description { text-align: center; color: #666; margin-bottom: 30px; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
"""
|
| 179 |
|
| 180 |
with gr.Blocks(css=css, title="Kolam AI Generator") as interface:
|
|
|
|
|
|
|
| 181 |
gr.HTML("""
|
| 182 |
<div class="title">
|
| 183 |
<h1>π¨ Kolam AI Generator</h1>
|
| 184 |
+
<p class="description">Generate beautiful traditional Indian Kolam designs using AI</p>
|
|
|
|
|
|
|
| 185 |
</div>
|
| 186 |
""")
|
| 187 |
|
| 188 |
with gr.Row():
|
| 189 |
with gr.Column(scale=1):
|
| 190 |
+
gr.Markdown("### ποΈ Controls")
|
| 191 |
+
complexity = gr.Dropdown(["Simple", "Medium", "Complex"], value="Medium", label="Pattern Complexity")
|
| 192 |
+
symmetry = gr.Dropdown(["Low", "Medium", "High"], value="Medium", label="Symmetry Level")
|
| 193 |
+
seed = gr.Number(value=None, label="Random Seed (Optional)")
|
| 194 |
+
generate_btn = gr.Button("π¨ Generate Kolam", variant="primary", size="lg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
with gr.Column(scale=2):
|
|
|
|
| 197 |
gr.Markdown("### πΌοΈ Generated Kolam")
|
| 198 |
+
output_image = gr.Image(label="Generated Design", type="pil", height=400)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
gr.Markdown("### π Quality Analysis")
|
| 200 |
+
quality_output = gr.JSON(label="Design Quality Metrics", value={})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
generate_btn.click(fn=generate_and_analyze, inputs=[complexity, symmetry, seed], outputs=[output_image, quality_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
|
| 204 |
+
interface.load(fn=lambda: generate_and_analyze("Medium", "Medium", None), outputs=[output_image, quality_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
|
| 206 |
return interface
|
| 207 |
|
| 208 |
+
|
| 209 |
if __name__ == "__main__":
|
| 210 |
interface = create_interface()
|
| 211 |
+
interface.launch(server_name="0.0.0.0", server_port=7860, share=True, show_error=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|