Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,13 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForTokenClassification,RobertaTokenizer
|
| 3 |
import torch
|
|
|
|
|
|
|
| 4 |
from fin_readability_sustainability import BERTClass, do_predict
|
| 5 |
import pandas as pd
|
| 6 |
|
|
|
|
|
|
|
| 7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 8 |
|
| 9 |
|
|
@@ -13,7 +17,6 @@ model_sustain.to(device)
|
|
| 13 |
model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict'])
|
| 14 |
|
| 15 |
|
| 16 |
-
from nltk.tokenize import sent_tokenize
|
| 17 |
def get_sustainability(text):
|
| 18 |
df = pd.DataFrame({'sentence':sent_tokenize(text)})
|
| 19 |
actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import AutoTokenizer, AutoModelForTokenClassification,RobertaTokenizer
|
| 3 |
import torch
|
| 4 |
+
import nltk
|
| 5 |
+
from nltk.tokenize import sent_tokenize
|
| 6 |
from fin_readability_sustainability import BERTClass, do_predict
|
| 7 |
import pandas as pd
|
| 8 |
|
| 9 |
+
nltk.download('punkt')
|
| 10 |
+
|
| 11 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
|
| 13 |
|
|
|
|
| 17 |
model_sustain.load_state_dict(torch.load('sustainability_model.bin', map_location=device)['model_state_dict'])
|
| 18 |
|
| 19 |
|
|
|
|
| 20 |
def get_sustainability(text):
|
| 21 |
df = pd.DataFrame({'sentence':sent_tokenize(text)})
|
| 22 |
actual_predictions_sustainability = do_predict(model_sustain, tokenizer_sus, df)
|