Spaces:
Runtime error
Runtime error
| import os | |
| os.system('pip install ctransformers') | |
| import ctransformers | |
| import time | |
| import requests | |
| from tqdm import tqdm | |
| import uuid | |
| #Get the model file - you will need Expandable Storage to make this work | |
| if not os.path.isfile('llama-2-7b.ggmlv3.q4_K_S.bin'): | |
| print("Downloading Model from HuggingFace") | |
| url = "https://huggingface.co/TheBloke/Llama-2-7B-GGML/resolve/main/llama-2-7b.ggmlv3.q4_K_S.bin" | |
| response = requests.get(url, stream=True) | |
| total_size_in_bytes= int(response.headers.get('content-length', 0)) | |
| block_size = 1024 #1 Kibibyte | |
| progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True) | |
| with open('llama-2-7b.ggmlv3.q4_K_S.bin', 'wb') as file: | |
| for data in response.iter_content(block_size): | |
| progress_bar.update(len(data)) | |
| file.write(data) | |
| progress_bar.close() | |
| if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes: | |
| print("ERROR, something went wrong") | |
| #Sets up the transformer library and adds in the Llama-2 model | |
| configObj = ctransformers.Config(stop=["\n", 'User']) | |
| config = ctransformers.AutoConfig(config=configObj, model_type='llama') | |
| config.config.stop = ["\n"] | |
| llm = ctransformers.AutoModelForCausalLM.from_pretrained('./llama-2-7b.ggmlv3.q4_K_S.bin', config=config) | |
| print("Loaded model") | |
| def time_it(func): | |
| def wrapper(*args, **kwargs): | |
| start_time = time.time() | |
| result = func(*args, **kwargs) | |
| end_time = time.time() | |
| execution_time = end_time - start_time | |
| print(f"Function '{func.__name__}' took {execution_time:.6f} seconds to execute.") | |
| return result | |
| return wrapper | |
| def complete(prompt, stop=["User", "Assistant"]): | |
| tokens = llm.tokenize(prompt) | |
| token_count = 0 | |
| output = '' | |
| for token in llm.generate(tokens): | |
| token_count += 1 | |
| result = llm.detokenize(token) | |
| output += result | |
| for word in stop: | |
| if word in output: | |
| print('\n') | |
| return [output, token_count] | |
| print(result, end='',flush=True) | |
| print('\n') | |
| return [output, token_count] | |
| while True: | |
| question = input("\nWhat is your question? > ") | |
| start_time = time.time() | |
| output, token_count = complete(f'User: {question}. Can you please answer this as informative but concisely as possible.\nAssistant: ') | |
| end_time = time.time() | |
| execution_time = end_time - start_time | |
| print(f"{token_count} tokens generated in {execution_time:.6f} seconds.\n{token_count/execution_time} tokens per second") | |