Spaces:
Runtime error
Runtime error
| import os | |
| import torch | |
| import torch.nn as nn | |
| import timm | |
| from torchvision import transforms | |
| from torchvision.transforms.functional import InterpolationMode | |
| import gradio as gr | |
| from PIL import Image | |
| import torch.nn.functional as F | |
| # 전역 설정 | |
| CFG = { | |
| 'IMG_SIZE': 224 | |
| } | |
| class MultiLabelClassificationModel(nn.Module): | |
| def __init__(self, num_labels): | |
| super(MultiLabelClassificationModel, self).__init__() | |
| # 이미지 특징 추출 | |
| self.cnn = timm.create_model("timm/convnext_base.clip_laion2b_augreg_ft_in12k_in1k", pretrained=True, drop_rate=0.05, drop_path_rate=0.05, in_chans=3) | |
| # 멀티 라벨 분류 헤드 | |
| self.classification_head = nn.Linear(1000, num_labels) | |
| def forward(self, images): | |
| # CNN | |
| features = self.cnn(images) | |
| features_flat = features.view(features.size(0), -1) | |
| # 멀티 라벨 분류 | |
| logits = self.classification_head(features_flat) | |
| # probs = torch.sigmoid(logits) | |
| return logits | |
| test_transform = transforms.Compose([ | |
| transforms.Resize(size=(CFG['IMG_SIZE'], CFG['IMG_SIZE']), interpolation=InterpolationMode.BICUBIC), | |
| transforms.ToTensor(), | |
| transforms.Normalize(mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225]), | |
| ]) | |
| model = MultiLabelClassificationModel(num_labels=13) | |
| model.load_state_dict(torch.load(f'checkpoint.tar')['model_state_dict']) | |
| model.eval() # 모델을 평가 모드로 설정 | |
| # 미리 설정한 라벨 목록 | |
| labels = ['Mold', 'blight', 'greening', 'healthy', 'measles', | |
| 'mildew', 'mite', 'rot', 'rust', 'scab', 'scorch', 'spot', 'virus'] | |
| def predict(image_path): | |
| image = Image.open(image_path) | |
| image = test_transform(image).unsqueeze(0) | |
| with torch.no_grad(): | |
| logits = model(image) | |
| probs = F.softmax(logits, dim=1) # softmax를 적용하여 확률 값으로 변환 | |
| result = {label: float(probs[0][i]) for i, label in enumerate(labels)} | |
| return result | |
| app = gr.Interface( | |
| fn=predict, | |
| inputs=gr.Image(type='filepath'), | |
| outputs=gr.Label(), | |
| title='Multi-Label Image Classification', | |
| description='Automatically classify images into the following categories: ' + ', '.join(labels) + '.' | |
| ) | |
| app.launch(share=True) |