Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import os
|
| 2 |
-
|
| 3 |
import cv2
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
|
@@ -7,144 +6,82 @@ from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
|
| 7 |
from gfpgan.utils import GFPGANer
|
| 8 |
from realesrgan.utils import RealESRGANer
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
if not os.path.exists('realesr-general-x4v3.pth'):
|
| 13 |
-
os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
|
| 14 |
-
if not os.path.exists('GFPGANv1.2.pth'):
|
| 15 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
|
| 16 |
-
if not os.path.exists('GFPGANv1.3.pth'):
|
| 17 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
|
| 18 |
-
if not os.path.exists('GFPGANv1.4.pth'):
|
| 19 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
|
| 20 |
-
if not os.path.exists('RestoreFormer.pth'):
|
| 21 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
|
| 22 |
-
if not os.path.exists('CodeFormer.pth'):
|
| 23 |
-
os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
|
| 24 |
-
|
| 25 |
-
torch.hub.download_url_to_file(
|
| 26 |
-
'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
|
| 27 |
-
'lincoln.jpg')
|
| 28 |
-
torch.hub.download_url_to_file(
|
| 29 |
-
'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
|
| 30 |
-
'AI-generate.jpg')
|
| 31 |
-
torch.hub.download_url_to_file(
|
| 32 |
-
'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
|
| 33 |
-
'Blake_Lively.jpg')
|
| 34 |
-
torch.hub.download_url_to_file(
|
| 35 |
-
'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
|
| 36 |
-
'10045.png')
|
| 37 |
|
| 38 |
-
# background
|
| 39 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
if len(img.shape) == 3 and img.shape[2] == 4:
|
| 57 |
-
img_mode = 'RGBA'
|
| 58 |
-
elif len(img.shape) == 2: # for gray inputs
|
| 59 |
-
img_mode = None
|
| 60 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
| 61 |
-
else:
|
| 62 |
-
img_mode = None
|
| 63 |
-
|
| 64 |
-
h, w = img.shape[0:2]
|
| 65 |
-
if h > 3500 or w > 3500:
|
| 66 |
-
print('too large size')
|
| 67 |
-
return None, None
|
| 68 |
-
|
| 69 |
-
if h < 300:
|
| 70 |
-
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
| 71 |
-
|
| 72 |
-
if version == 'v1.2':
|
| 73 |
-
face_enhancer = GFPGANer(
|
| 74 |
-
model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
| 75 |
-
elif version == 'v1.3':
|
| 76 |
-
face_enhancer = GFPGANer(
|
| 77 |
-
model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
| 78 |
-
elif version == 'v1.4':
|
| 79 |
-
face_enhancer = GFPGANer(
|
| 80 |
-
model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
| 81 |
-
elif version == 'RestoreFormer':
|
| 82 |
-
face_enhancer = GFPGANer(
|
| 83 |
-
model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
| 84 |
-
# elif version == 'CodeFormer':
|
| 85 |
-
# face_enhancer = GFPGANer(
|
| 86 |
-
# model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
| 87 |
-
|
| 88 |
-
try:
|
| 89 |
-
# _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
|
| 90 |
-
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
| 91 |
-
except RuntimeError as error:
|
| 92 |
-
print('Error', error)
|
| 93 |
-
|
| 94 |
-
try:
|
| 95 |
-
if scale != 2:
|
| 96 |
-
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
| 97 |
-
h, w = img.shape[0:2]
|
| 98 |
-
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
| 99 |
-
except Exception as error:
|
| 100 |
-
print('wrong scale input.', error)
|
| 101 |
-
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
| 102 |
-
extension = 'png'
|
| 103 |
-
else:
|
| 104 |
-
extension = 'jpg'
|
| 105 |
-
save_path = f'output/out.{extension}'
|
| 106 |
-
cv2.imwrite(save_path, output)
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
return None, None
|
| 113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
|
| 115 |
-
|
| 116 |
-
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
|
| 117 |
-
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
|
| 118 |
-
To use it, simply upload your image.<br>
|
| 119 |
-
If GFPGAN is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends 😊
|
| 120 |
-
"""
|
| 121 |
-
article = r"""
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
[
|
|
|
|
| 126 |
|
| 127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
-
<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
|
| 130 |
-
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
|
| 131 |
-
"""
|
| 132 |
demo = gr.Interface(
|
| 133 |
-
inference,
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'],
|
| 137 |
-
gr.
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
gr.Image(type="numpy", label="
|
| 141 |
-
gr.File(label="Download
|
| 142 |
],
|
| 143 |
-
title=
|
| 144 |
-
description=
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
# ['10045.png', 'v1.4', 2, 50]]).launch()
|
| 148 |
-
examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2],
|
| 149 |
-
['10045.png', 'v1.4', 2]])
|
| 150 |
demo.queue().launch()
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import cv2
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
|
|
|
| 6 |
from gfpgan.utils import GFPGANer
|
| 7 |
from realesrgan.utils import RealESRGANer
|
| 8 |
|
| 9 |
+
# Create output directory
|
| 10 |
+
os.makedirs("output", exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
# Load background upsampler (RealESRGAN)
|
| 13 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
| 14 |
+
upsampler = RealESRGANer(
|
| 15 |
+
scale=4,
|
| 16 |
+
model_path='realesr-general-x4v3.pth',
|
| 17 |
+
model=model,
|
| 18 |
+
tile=0,
|
| 19 |
+
tile_pad=10,
|
| 20 |
+
pre_pad=0,
|
| 21 |
+
half=torch.cuda.is_available()
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
def inference(img_path, version, scale):
|
| 25 |
+
extension = os.path.splitext(os.path.basename(str(img_path)))[1]
|
| 26 |
+
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
|
| 27 |
+
|
| 28 |
+
if img is None:
|
| 29 |
+
return None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
if len(img.shape) == 2:
|
| 32 |
+
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
| 33 |
+
elif img.shape[2] == 4:
|
| 34 |
+
img = img[:, :, :3] # Remove alpha
|
| 35 |
+
|
| 36 |
+
if version == 'v1.2':
|
| 37 |
+
model_path = 'GFPGANv1.2.pth'
|
| 38 |
+
arch = 'clean'
|
| 39 |
+
elif version == 'v1.3':
|
| 40 |
+
model_path = 'GFPGANv1.3.pth'
|
| 41 |
+
arch = 'clean'
|
| 42 |
+
elif version == 'v1.4':
|
| 43 |
+
model_path = 'GFPGANv1.4.pth'
|
| 44 |
+
arch = 'clean'
|
| 45 |
+
elif version == 'RestoreFormer':
|
| 46 |
+
model_path = 'RestoreFormer.pth'
|
| 47 |
+
arch = 'RestoreFormer'
|
| 48 |
+
else:
|
| 49 |
return None, None
|
| 50 |
|
| 51 |
+
face_enhancer = GFPGANer(
|
| 52 |
+
model_path=model_path,
|
| 53 |
+
upscale=2,
|
| 54 |
+
arch=arch,
|
| 55 |
+
channel_multiplier=2,
|
| 56 |
+
bg_upsampler=upsampler
|
| 57 |
+
)
|
| 58 |
|
| 59 |
+
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
# Rescale
|
| 62 |
+
if scale != 2:
|
| 63 |
+
h, w = output.shape[:2]
|
| 64 |
+
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=cv2.INTER_LANCZOS4)
|
| 65 |
|
| 66 |
+
save_path = f"output/restored_{version}.jpg"
|
| 67 |
+
cv2.imwrite(save_path, output)
|
| 68 |
+
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
| 69 |
+
|
| 70 |
+
return output, save_path
|
| 71 |
|
|
|
|
|
|
|
|
|
|
| 72 |
demo = gr.Interface(
|
| 73 |
+
fn=inference,
|
| 74 |
+
inputs=[
|
| 75 |
+
gr.Image(type="filepath", label="Input Image"),
|
| 76 |
+
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], label="GFPGAN Version", value="v1.4"),
|
| 77 |
+
gr.Slider(1, 4, value=2, label="Rescaling Factor")
|
| 78 |
+
],
|
| 79 |
+
outputs=[
|
| 80 |
+
gr.Image(type="numpy", label="Restored Image"),
|
| 81 |
+
gr.File(label="Download")
|
| 82 |
],
|
| 83 |
+
title="GFPGAN Face Restoration on Hugging Face",
|
| 84 |
+
description="Restore old or AI-generated faces using GFPGAN."
|
| 85 |
+
)
|
| 86 |
+
|
|
|
|
|
|
|
|
|
|
| 87 |
demo.queue().launch()
|