aamsko commited on
Commit
ac65561
·
verified ·
1 Parent(s): a1972ac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -130
app.py CHANGED
@@ -1,5 +1,4 @@
1
  import os
2
-
3
  import cv2
4
  import gradio as gr
5
  import torch
@@ -7,144 +6,82 @@ from basicsr.archs.srvgg_arch import SRVGGNetCompact
7
  from gfpgan.utils import GFPGANer
8
  from realesrgan.utils import RealESRGANer
9
 
10
- os.system("pip freeze")
11
- # download weights
12
- if not os.path.exists('realesr-general-x4v3.pth'):
13
- os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .")
14
- if not os.path.exists('GFPGANv1.2.pth'):
15
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .")
16
- if not os.path.exists('GFPGANv1.3.pth'):
17
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .")
18
- if not os.path.exists('GFPGANv1.4.pth'):
19
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .")
20
- if not os.path.exists('RestoreFormer.pth'):
21
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .")
22
- if not os.path.exists('CodeFormer.pth'):
23
- os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .")
24
-
25
- torch.hub.download_url_to_file(
26
- 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg',
27
- 'lincoln.jpg')
28
- torch.hub.download_url_to_file(
29
- 'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg',
30
- 'AI-generate.jpg')
31
- torch.hub.download_url_to_file(
32
- 'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg',
33
- 'Blake_Lively.jpg')
34
- torch.hub.download_url_to_file(
35
- 'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png',
36
- '10045.png')
37
 
38
- # background enhancer with RealESRGAN
39
  model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
40
- model_path = 'realesr-general-x4v3.pth'
41
- half = True if torch.cuda.is_available() else False
42
- upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
43
-
44
- os.makedirs('output', exist_ok=True)
45
-
46
-
47
- # def inference(img, version, scale, weight):
48
- def inference(img, version, scale):
49
- # weight /= 100
50
- print(img, version, scale)
51
- if scale > 4:
52
- scale = 4 # avoid too large scale value
53
- try:
54
- extension = os.path.splitext(os.path.basename(str(img)))[1]
55
- img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
56
- if len(img.shape) == 3 and img.shape[2] == 4:
57
- img_mode = 'RGBA'
58
- elif len(img.shape) == 2: # for gray inputs
59
- img_mode = None
60
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
61
- else:
62
- img_mode = None
63
-
64
- h, w = img.shape[0:2]
65
- if h > 3500 or w > 3500:
66
- print('too large size')
67
- return None, None
68
-
69
- if h < 300:
70
- img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
71
-
72
- if version == 'v1.2':
73
- face_enhancer = GFPGANer(
74
- model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
75
- elif version == 'v1.3':
76
- face_enhancer = GFPGANer(
77
- model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
78
- elif version == 'v1.4':
79
- face_enhancer = GFPGANer(
80
- model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
81
- elif version == 'RestoreFormer':
82
- face_enhancer = GFPGANer(
83
- model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
84
- # elif version == 'CodeFormer':
85
- # face_enhancer = GFPGANer(
86
- # model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler)
87
-
88
- try:
89
- # _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight)
90
- _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
91
- except RuntimeError as error:
92
- print('Error', error)
93
-
94
- try:
95
- if scale != 2:
96
- interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
97
- h, w = img.shape[0:2]
98
- output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
99
- except Exception as error:
100
- print('wrong scale input.', error)
101
- if img_mode == 'RGBA': # RGBA images should be saved in png format
102
- extension = 'png'
103
- else:
104
- extension = 'jpg'
105
- save_path = f'output/out.{extension}'
106
- cv2.imwrite(save_path, output)
107
 
108
- output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
109
- return output, save_path
110
- except Exception as error:
111
- print('global exception', error)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  return None, None
113
 
 
 
 
 
 
 
 
114
 
115
- title = "GFPGAN: Practical Face Restoration Algorithm"
116
- description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
117
- It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
118
- To use it, simply upload your image.<br>
119
- If GFPGAN is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends 😊
120
- """
121
- article = r"""
122
 
123
- [![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
124
- [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
125
- [![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
 
126
 
127
- If you have any question, please email 📧 `xintao.[email protected]` or `[email protected]`.
 
 
 
 
128
 
129
- <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
130
- <center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
131
- """
132
  demo = gr.Interface(
133
- inference, [
134
- gr.Image(type="filepath", label="Input"),
135
- # gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", value='v1.4', label='version'),
136
- gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
137
- gr.Number(label="Rescaling factor", value=2),
138
- # gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', value=50)
139
- ], [
140
- gr.Image(type="numpy", label="Output (The whole image)"),
141
- gr.File(label="Download the output image")
142
  ],
143
- title=title,
144
- description=description,
145
- article=article,
146
- # examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50],
147
- # ['10045.png', 'v1.4', 2, 50]]).launch()
148
- examples=[['AI-generate.jpg', 'v1.4', 2], ['lincoln.jpg', 'v1.4', 2], ['Blake_Lively.jpg', 'v1.4', 2],
149
- ['10045.png', 'v1.4', 2]])
150
  demo.queue().launch()
 
1
  import os
 
2
  import cv2
3
  import gradio as gr
4
  import torch
 
6
  from gfpgan.utils import GFPGANer
7
  from realesrgan.utils import RealESRGANer
8
 
9
+ # Create output directory
10
+ os.makedirs("output", exist_ok=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
+ # Load background upsampler (RealESRGAN)
13
  model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
14
+ upsampler = RealESRGANer(
15
+ scale=4,
16
+ model_path='realesr-general-x4v3.pth',
17
+ model=model,
18
+ tile=0,
19
+ tile_pad=10,
20
+ pre_pad=0,
21
+ half=torch.cuda.is_available()
22
+ )
23
+
24
+ def inference(img_path, version, scale):
25
+ extension = os.path.splitext(os.path.basename(str(img_path)))[1]
26
+ img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
27
+
28
+ if img is None:
29
+ return None, None
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ if len(img.shape) == 2:
32
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
33
+ elif img.shape[2] == 4:
34
+ img = img[:, :, :3] # Remove alpha
35
+
36
+ if version == 'v1.2':
37
+ model_path = 'GFPGANv1.2.pth'
38
+ arch = 'clean'
39
+ elif version == 'v1.3':
40
+ model_path = 'GFPGANv1.3.pth'
41
+ arch = 'clean'
42
+ elif version == 'v1.4':
43
+ model_path = 'GFPGANv1.4.pth'
44
+ arch = 'clean'
45
+ elif version == 'RestoreFormer':
46
+ model_path = 'RestoreFormer.pth'
47
+ arch = 'RestoreFormer'
48
+ else:
49
  return None, None
50
 
51
+ face_enhancer = GFPGANer(
52
+ model_path=model_path,
53
+ upscale=2,
54
+ arch=arch,
55
+ channel_multiplier=2,
56
+ bg_upsampler=upsampler
57
+ )
58
 
59
+ _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
 
 
 
 
 
 
60
 
61
+ # Rescale
62
+ if scale != 2:
63
+ h, w = output.shape[:2]
64
+ output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=cv2.INTER_LANCZOS4)
65
 
66
+ save_path = f"output/restored_{version}.jpg"
67
+ cv2.imwrite(save_path, output)
68
+ output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
69
+
70
+ return output, save_path
71
 
 
 
 
72
  demo = gr.Interface(
73
+ fn=inference,
74
+ inputs=[
75
+ gr.Image(type="filepath", label="Input Image"),
76
+ gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], label="GFPGAN Version", value="v1.4"),
77
+ gr.Slider(1, 4, value=2, label="Rescaling Factor")
78
+ ],
79
+ outputs=[
80
+ gr.Image(type="numpy", label="Restored Image"),
81
+ gr.File(label="Download")
82
  ],
83
+ title="GFPGAN Face Restoration on Hugging Face",
84
+ description="Restore old or AI-generated faces using GFPGAN."
85
+ )
86
+
 
 
 
87
  demo.queue().launch()