Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,987 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --------------------------------------------------------
|
| 2 |
+
# PersonalizeSAM -- Personalize Segment Anything Model with One Shot
|
| 3 |
+
# Licensed under The MIT License [see LICENSE for details]
|
| 4 |
+
# --------------------------------------------------------
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import gradio as gr
|
| 9 |
+
import numpy as np
|
| 10 |
+
from torch.nn import functional as F
|
| 11 |
+
|
| 12 |
+
from show import *
|
| 13 |
+
from per_segment_anything import sam_model_registry, SamPredictor
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
import numpy as np
|
| 18 |
+
import matplotlib.pyplot as plt
|
| 19 |
+
from sklearn.metrics import precision_score, recall_score
|
| 20 |
+
import torch.nn.functional as F
|
| 21 |
+
|
| 22 |
+
import cv2
|
| 23 |
+
import numpy as np
|
| 24 |
+
from PIL import Image, ImageDraw
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
from PIL import ImageDraw, ImageFont
|
| 28 |
+
|
| 29 |
+
class ImageMask(gr.components.Image):
|
| 30 |
+
"""
|
| 31 |
+
Sets: source="canvas", tool="sketch"
|
| 32 |
+
"""
|
| 33 |
+
|
| 34 |
+
is_template = True
|
| 35 |
+
|
| 36 |
+
def __init__(self, **kwargs):
|
| 37 |
+
super().__init__(source="upload", tool="sketch", interactive=True, **kwargs)
|
| 38 |
+
|
| 39 |
+
def preprocess(self, x):
|
| 40 |
+
return super().preprocess(x)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class Mask_Weights(nn.Module):
|
| 44 |
+
def __init__(self):
|
| 45 |
+
super().__init__()
|
| 46 |
+
self.weights = nn.Parameter(torch.ones(2, 1, requires_grad=True) / 3)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def point_selection(mask_sim, topk=1):
|
| 50 |
+
# Top-1 point selection
|
| 51 |
+
w, h = mask_sim.shape
|
| 52 |
+
topk_xy = mask_sim.flatten(0).topk(topk)[1]
|
| 53 |
+
topk_x = (topk_xy // h).unsqueeze(0)
|
| 54 |
+
topk_y = (topk_xy - topk_x * h)
|
| 55 |
+
topk_xy = torch.cat((topk_y, topk_x), dim=0).permute(1, 0)
|
| 56 |
+
topk_label = np.array([1] * topk)
|
| 57 |
+
topk_xy = topk_xy.cpu().numpy()
|
| 58 |
+
|
| 59 |
+
# Top-last point selection
|
| 60 |
+
last_xy = mask_sim.flatten(0).topk(topk, largest=False)[1]
|
| 61 |
+
last_x = (last_xy // h).unsqueeze(0)
|
| 62 |
+
last_y = (last_xy - last_x * h)
|
| 63 |
+
last_xy = torch.cat((last_y, last_x), dim=0).permute(1, 0)
|
| 64 |
+
last_label = np.array([0] * topk)
|
| 65 |
+
last_xy = last_xy.cpu().numpy()
|
| 66 |
+
|
| 67 |
+
return topk_xy, topk_label, last_xy, last_label
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def calculate_dice_loss(inputs, targets, num_masks = 1):
|
| 71 |
+
"""
|
| 72 |
+
Compute the DICE loss, similar to generalized IOU for masks
|
| 73 |
+
Args:
|
| 74 |
+
inputs: A float tensor of arbitrary shape.
|
| 75 |
+
The predictions for each example.
|
| 76 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
| 77 |
+
classification label for each element in inputs
|
| 78 |
+
(0 for the negative class and 1 for the positive class).
|
| 79 |
+
"""
|
| 80 |
+
inputs = inputs.sigmoid()
|
| 81 |
+
inputs = inputs.flatten(1)
|
| 82 |
+
numerator = 2 * (inputs * targets).sum(-1)
|
| 83 |
+
denominator = inputs.sum(-1) + targets.sum(-1)
|
| 84 |
+
loss = 1 - (numerator + 1) / (denominator + 1)
|
| 85 |
+
return loss.sum() / num_masks
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def calculate_sigmoid_focal_loss(inputs, targets, num_masks = 1, alpha: float = 0.25, gamma: float = 2):
|
| 89 |
+
"""
|
| 90 |
+
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
|
| 91 |
+
Args:
|
| 92 |
+
inputs: A float tensor of arbitrary shape.
|
| 93 |
+
The predictions for each example.
|
| 94 |
+
targets: A float tensor with the same shape as inputs. Stores the binary
|
| 95 |
+
classification label for each element in inputs
|
| 96 |
+
(0 for the negative class and 1 for the positive class).
|
| 97 |
+
alpha: (optional) Weighting factor in range (0,1) to balance
|
| 98 |
+
positive vs negative examples. Default = -1 (no weighting).
|
| 99 |
+
gamma: Exponent of the modulating factor (1 - p_t) to
|
| 100 |
+
balance easy vs hard examples.
|
| 101 |
+
Returns:
|
| 102 |
+
Loss tensor
|
| 103 |
+
"""
|
| 104 |
+
prob = inputs.sigmoid()
|
| 105 |
+
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
|
| 106 |
+
p_t = prob * targets + (1 - prob) * (1 - targets)
|
| 107 |
+
loss = ce_loss * ((1 - p_t) ** gamma)
|
| 108 |
+
|
| 109 |
+
if alpha >= 0:
|
| 110 |
+
alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
|
| 111 |
+
loss = alpha_t * loss
|
| 112 |
+
|
| 113 |
+
return loss.mean(1).sum() / num_masks
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def inference(ic_image, ic_mask, image1, image2):
|
| 117 |
+
# in context image and mask
|
| 118 |
+
ic_image = np.array(ic_image.convert("RGB"))
|
| 119 |
+
ic_mask = np.array(ic_mask.convert("RGB"))
|
| 120 |
+
|
| 121 |
+
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
|
| 122 |
+
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).to('cpu')
|
| 123 |
+
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
|
| 124 |
+
predictor = SamPredictor(sam)
|
| 125 |
+
|
| 126 |
+
# Image features encoding
|
| 127 |
+
ref_mask = predictor.set_image(ic_image, ic_mask)
|
| 128 |
+
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
|
| 129 |
+
|
| 130 |
+
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
|
| 131 |
+
ref_mask = ref_mask.squeeze()[0]
|
| 132 |
+
|
| 133 |
+
# Target feature extraction
|
| 134 |
+
print("======> Obtain Location Prior" )
|
| 135 |
+
target_feat = ref_feat[ref_mask > 0]
|
| 136 |
+
target_embedding = target_feat.mean(0).unsqueeze(0)
|
| 137 |
+
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
|
| 138 |
+
target_embedding = target_embedding.unsqueeze(0)
|
| 139 |
+
|
| 140 |
+
output_image = []
|
| 141 |
+
|
| 142 |
+
for test_image in [image1, image2]:
|
| 143 |
+
print("======> Testing Image" )
|
| 144 |
+
test_image = np.array(test_image.convert("RGB"))
|
| 145 |
+
|
| 146 |
+
# Image feature encoding
|
| 147 |
+
predictor.set_image(test_image)
|
| 148 |
+
test_feat = predictor.features.squeeze()
|
| 149 |
+
|
| 150 |
+
# Cosine similarity
|
| 151 |
+
C, h, w = test_feat.shape
|
| 152 |
+
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
|
| 153 |
+
test_feat = test_feat.reshape(C, h * w)
|
| 154 |
+
sim = target_feat @ test_feat
|
| 155 |
+
|
| 156 |
+
sim = sim.reshape(1, 1, h, w)
|
| 157 |
+
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
| 158 |
+
sim = predictor.model.postprocess_masks(
|
| 159 |
+
sim,
|
| 160 |
+
input_size=predictor.input_size,
|
| 161 |
+
original_size=predictor.original_size).squeeze()
|
| 162 |
+
|
| 163 |
+
# Positive-negative location prior
|
| 164 |
+
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
|
| 165 |
+
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
|
| 166 |
+
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
|
| 167 |
+
|
| 168 |
+
# Obtain the target guidance for cross-attention layers
|
| 169 |
+
sim = (sim - sim.mean()) / torch.std(sim)
|
| 170 |
+
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
|
| 171 |
+
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
|
| 172 |
+
|
| 173 |
+
# First-step prediction
|
| 174 |
+
masks, scores, logits, _ = predictor.predict(
|
| 175 |
+
point_coords=topk_xy,
|
| 176 |
+
point_labels=topk_label,
|
| 177 |
+
multimask_output=False,
|
| 178 |
+
attn_sim=attn_sim, # Target-guided Attention
|
| 179 |
+
target_embedding=target_embedding # Target-semantic Prompting
|
| 180 |
+
)
|
| 181 |
+
best_idx = 0
|
| 182 |
+
|
| 183 |
+
# Cascaded Post-refinement-1
|
| 184 |
+
masks, scores, logits, _ = predictor.predict(
|
| 185 |
+
point_coords=topk_xy,
|
| 186 |
+
point_labels=topk_label,
|
| 187 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
| 188 |
+
multimask_output=True)
|
| 189 |
+
best_idx = np.argmax(scores)
|
| 190 |
+
|
| 191 |
+
# Cascaded Post-refinement-2
|
| 192 |
+
y, x = np.nonzero(masks[best_idx])
|
| 193 |
+
x_min = x.min()
|
| 194 |
+
x_max = x.max()
|
| 195 |
+
y_min = y.min()
|
| 196 |
+
y_max = y.max()
|
| 197 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
| 198 |
+
masks, scores, logits, _ = predictor.predict(
|
| 199 |
+
point_coords=topk_xy,
|
| 200 |
+
point_labels=topk_label,
|
| 201 |
+
box=input_box[None, :],
|
| 202 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
| 203 |
+
multimask_output=True)
|
| 204 |
+
best_idx = np.argmax(scores)
|
| 205 |
+
|
| 206 |
+
final_mask = masks[best_idx]
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
|
| 213 |
+
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
|
| 214 |
+
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
|
| 215 |
+
|
| 216 |
+
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def inference_scribble(image, image1, image2):
|
| 220 |
+
# in context image and mask
|
| 221 |
+
ic_image = image["image"]
|
| 222 |
+
ic_mask = image["mask"]
|
| 223 |
+
ic_image = np.array(ic_image.convert("RGB"))
|
| 224 |
+
ic_mask = np.array(ic_mask.convert("RGB"))
|
| 225 |
+
|
| 226 |
+
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
|
| 227 |
+
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).to('cpu')
|
| 228 |
+
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
|
| 229 |
+
predictor = SamPredictor(sam)
|
| 230 |
+
|
| 231 |
+
# Image features encoding
|
| 232 |
+
ref_mask = predictor.set_image(ic_image, ic_mask)
|
| 233 |
+
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
|
| 234 |
+
|
| 235 |
+
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
|
| 236 |
+
ref_mask = ref_mask.squeeze()[0]
|
| 237 |
+
|
| 238 |
+
# Target feature extraction
|
| 239 |
+
print("======> Obtain Location Prior" )
|
| 240 |
+
target_feat = ref_feat[ref_mask > 0]
|
| 241 |
+
target_embedding = target_feat.mean(0).unsqueeze(0)
|
| 242 |
+
target_feat = target_embedding / target_embedding.norm(dim=-1, keepdim=True)
|
| 243 |
+
target_embedding = target_embedding.unsqueeze(0)
|
| 244 |
+
|
| 245 |
+
output_image = []
|
| 246 |
+
|
| 247 |
+
for test_image in [image1, image2]:
|
| 248 |
+
print("======> Testing Image" )
|
| 249 |
+
test_image = np.array(test_image.convert("RGB"))
|
| 250 |
+
|
| 251 |
+
# Image feature encoding
|
| 252 |
+
predictor.set_image(test_image)
|
| 253 |
+
test_feat = predictor.features.squeeze()
|
| 254 |
+
|
| 255 |
+
# Cosine similarity
|
| 256 |
+
C, h, w = test_feat.shape
|
| 257 |
+
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
|
| 258 |
+
test_feat = test_feat.reshape(C, h * w)
|
| 259 |
+
sim = target_feat @ test_feat
|
| 260 |
+
|
| 261 |
+
sim = sim.reshape(1, 1, h, w)
|
| 262 |
+
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
| 263 |
+
sim = predictor.model.postprocess_masks(
|
| 264 |
+
sim,
|
| 265 |
+
input_size=predictor.input_size,
|
| 266 |
+
original_size=predictor.original_size).squeeze()
|
| 267 |
+
|
| 268 |
+
# Positive-negative location prior
|
| 269 |
+
topk_xy_i, topk_label_i, last_xy_i, last_label_i = point_selection(sim, topk=1)
|
| 270 |
+
topk_xy = np.concatenate([topk_xy_i, last_xy_i], axis=0)
|
| 271 |
+
topk_label = np.concatenate([topk_label_i, last_label_i], axis=0)
|
| 272 |
+
|
| 273 |
+
# Obtain the target guidance for cross-attention layers
|
| 274 |
+
sim = (sim - sim.mean()) / torch.std(sim)
|
| 275 |
+
sim = F.interpolate(sim.unsqueeze(0).unsqueeze(0), size=(64, 64), mode="bilinear")
|
| 276 |
+
attn_sim = sim.sigmoid_().unsqueeze(0).flatten(3)
|
| 277 |
+
|
| 278 |
+
# First-step prediction
|
| 279 |
+
masks, scores, logits, _ = predictor.predict(
|
| 280 |
+
point_coords=topk_xy,
|
| 281 |
+
point_labels=topk_label,
|
| 282 |
+
multimask_output=False,
|
| 283 |
+
attn_sim=attn_sim, # Target-guided Attention
|
| 284 |
+
target_embedding=target_embedding # Target-semantic Prompting
|
| 285 |
+
)
|
| 286 |
+
best_idx = 0
|
| 287 |
+
|
| 288 |
+
# Cascaded Post-refinement-1
|
| 289 |
+
masks, scores, logits, _ = predictor.predict(
|
| 290 |
+
point_coords=topk_xy,
|
| 291 |
+
point_labels=topk_label,
|
| 292 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
| 293 |
+
multimask_output=True)
|
| 294 |
+
best_idx = np.argmax(scores)
|
| 295 |
+
|
| 296 |
+
# Cascaded Post-refinement-2
|
| 297 |
+
y, x = np.nonzero(masks[best_idx])
|
| 298 |
+
x_min = x.min()
|
| 299 |
+
x_max = x.max()
|
| 300 |
+
y_min = y.min()
|
| 301 |
+
y_max = y.max()
|
| 302 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
| 303 |
+
masks, scores, logits, _ = predictor.predict(
|
| 304 |
+
point_coords=topk_xy,
|
| 305 |
+
point_labels=topk_label,
|
| 306 |
+
box=input_box[None, :],
|
| 307 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
| 308 |
+
multimask_output=True)
|
| 309 |
+
best_idx = np.argmax(scores)
|
| 310 |
+
|
| 311 |
+
final_mask = masks[best_idx]
|
| 312 |
+
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
|
| 313 |
+
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
|
| 314 |
+
output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
|
| 315 |
+
|
| 316 |
+
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def inference_finetune_train(ic_image, ic_mask, image1, image2):
|
| 320 |
+
# in context image and mask
|
| 321 |
+
ic_image = np.array(ic_image.convert("RGB"))
|
| 322 |
+
ic_mask = np.array(ic_mask.convert("RGB"))
|
| 323 |
+
|
| 324 |
+
gt_mask = torch.tensor(ic_mask)[:, :, 0] > 0
|
| 325 |
+
gt_mask = gt_mask.float().unsqueeze(0).flatten(1).to('cpu')
|
| 326 |
+
# gt_mask = gt_mask.float().unsqueeze(0).flatten(1)
|
| 327 |
+
|
| 328 |
+
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
|
| 329 |
+
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).to('cpu')
|
| 330 |
+
# sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
|
| 331 |
+
for name, param in sam.named_parameters():
|
| 332 |
+
param.requires_grad = False
|
| 333 |
+
predictor = SamPredictor(sam)
|
| 334 |
+
|
| 335 |
+
#์๊ธฐ ์์น ์ฐ์ ๊ฐ ํ๋
|
| 336 |
+
print("======> Obtain Self Location Prior" )
|
| 337 |
+
# Image features encoding
|
| 338 |
+
ref_mask = predictor.set_image(ic_image, ic_mask)
|
| 339 |
+
ref_feat = predictor.features.squeeze().permute(1, 2, 0)
|
| 340 |
+
|
| 341 |
+
ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
|
| 342 |
+
ref_mask = ref_mask.squeeze()[0]
|
| 343 |
+
|
| 344 |
+
# Target feature extraction
|
| 345 |
+
target_feat = ref_feat[ref_mask > 0]
|
| 346 |
+
target_feat_mean = target_feat.mean(0)
|
| 347 |
+
target_feat_max = torch.max(target_feat, dim=0)[0]
|
| 348 |
+
target_feat = (target_feat_max / 2 + target_feat_mean / 2).unsqueeze(0)
|
| 349 |
+
|
| 350 |
+
# Cosine similarity
|
| 351 |
+
h, w, C = ref_feat.shape
|
| 352 |
+
target_feat = target_feat / target_feat.norm(dim=-1, keepdim=True)
|
| 353 |
+
ref_feat = ref_feat / ref_feat.norm(dim=-1, keepdim=True)
|
| 354 |
+
ref_feat = ref_feat.permute(2, 0, 1).reshape(C, h * w)
|
| 355 |
+
sim = target_feat @ ref_feat
|
| 356 |
+
|
| 357 |
+
# target_feat ์ ์ฅ
|
| 358 |
+
torch.save(target_feat, 'target_feat.pth')
|
| 359 |
+
print("target_feat๊ฐ 'target_feat.pth' ํ์ผ๋ก ์ ์ฅ๋์์ต๋๋ค.")
|
| 360 |
+
|
| 361 |
+
sim = sim.reshape(1, 1, h, w)
|
| 362 |
+
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
| 363 |
+
sim = predictor.model.postprocess_masks(
|
| 364 |
+
sim,
|
| 365 |
+
input_size=predictor.input_size,
|
| 366 |
+
original_size=predictor.original_size).squeeze()
|
| 367 |
+
|
| 368 |
+
# Positive location prior
|
| 369 |
+
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
|
| 370 |
+
|
| 371 |
+
print('======> Start Training')
|
| 372 |
+
# Learnable mask weights
|
| 373 |
+
mask_weights = Mask_Weights().to('cpu')
|
| 374 |
+
# mask_weights = Mask_Weights()
|
| 375 |
+
mask_weights.train()
|
| 376 |
+
train_epoch = 1000
|
| 377 |
+
optimizer = torch.optim.AdamW(mask_weights.parameters(), lr=1e-4, eps=1e-4, betas=(0.9, 0.999), weight_decay=0.01, amsgrad=False)
|
| 378 |
+
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, train_epoch)
|
| 379 |
+
|
| 380 |
+
for train_idx in range(train_epoch):
|
| 381 |
+
# Run the decoder
|
| 382 |
+
masks, scores, logits, logits_high = predictor.predict(
|
| 383 |
+
point_coords=topk_xy,
|
| 384 |
+
point_labels=topk_label,
|
| 385 |
+
multimask_output=True)
|
| 386 |
+
logits_high = logits_high.flatten(1)
|
| 387 |
+
|
| 388 |
+
# Weighted sum three-scale masks
|
| 389 |
+
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
| 390 |
+
logits_high = logits_high * weights
|
| 391 |
+
logits_high = logits_high.sum(0).unsqueeze(0)
|
| 392 |
+
|
| 393 |
+
dice_loss = calculate_dice_loss(logits_high, gt_mask)
|
| 394 |
+
focal_loss = calculate_sigmoid_focal_loss(logits_high, gt_mask)
|
| 395 |
+
loss = dice_loss + focal_loss
|
| 396 |
+
|
| 397 |
+
optimizer.zero_grad()
|
| 398 |
+
loss.backward()
|
| 399 |
+
optimizer.step()
|
| 400 |
+
scheduler.step()
|
| 401 |
+
|
| 402 |
+
if train_idx % 10 == 0:
|
| 403 |
+
print('Train Epoch: {:} / {:}'.format(train_idx, train_epoch))
|
| 404 |
+
current_lr = scheduler.get_last_lr()[0]
|
| 405 |
+
print('LR: {:.6f}, Dice_Loss: {:.4f}, Focal_Loss: {:.4f}'.format(current_lr, dice_loss.item(), focal_loss.item()))
|
| 406 |
+
|
| 407 |
+
|
| 408 |
+
mask_weights.eval()
|
| 409 |
+
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
| 410 |
+
weights_np = weights.detach().cpu().numpy()
|
| 411 |
+
print('======> Mask weights:\n', weights_np)
|
| 412 |
+
|
| 413 |
+
# # 1. ๊ฐ์ค์น ์ ์ฅ
|
| 414 |
+
torch.save(mask_weights.state_dict(), 'mask_weights.pth')
|
| 415 |
+
print("๊ฐ์ค์น๊ฐ 'mask_weights.pth' ํ์ผ๋ก ์ ์ฅ๋์์ต๋๋ค.")
|
| 416 |
+
|
| 417 |
+
#########################Training ๋ ########################################
|
| 418 |
+
# 2. ํ
์คํธ ์ ์ฉ ์ฝ๋
|
| 419 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ ๋ฐ ๊ฐ์ค์น ๋ก๋
|
| 420 |
+
mask_weights = Mask_Weights().to('cpu')
|
| 421 |
+
mask_weights.load_state_dict(torch.load('Personalize-SAM\mask_weights.pth'))
|
| 422 |
+
mask_weights.eval() # ํ๊ฐ ๋ชจ๋๋ก ์ค์ (์ถ๊ฐ ํ์ต ๋ฐฉ์ง)
|
| 423 |
+
|
| 424 |
+
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
| 425 |
+
weights_np = weights.detach().cpu().numpy()
|
| 426 |
+
print('======> Mask weights:\n', weights_np)
|
| 427 |
+
|
| 428 |
+
print('======> Start Testing')
|
| 429 |
+
output_image = []
|
| 430 |
+
|
| 431 |
+
for test_image in [image1, image2]:
|
| 432 |
+
test_image = np.array(test_image.convert("RGB"))
|
| 433 |
+
|
| 434 |
+
# Image feature encoding
|
| 435 |
+
predictor.set_image(test_image)
|
| 436 |
+
test_feat = predictor.features.squeeze()
|
| 437 |
+
# Image feature encoding
|
| 438 |
+
predictor.set_image(test_image)
|
| 439 |
+
test_feat = predictor.features.squeeze()
|
| 440 |
+
|
| 441 |
+
# Cosine similarity
|
| 442 |
+
C, h, w = test_feat.shape
|
| 443 |
+
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
|
| 444 |
+
test_feat = test_feat.reshape(C, h * w)
|
| 445 |
+
sim = target_feat @ test_feat
|
| 446 |
+
|
| 447 |
+
sim = sim.reshape(1, 1, h, w)
|
| 448 |
+
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
| 449 |
+
sim = predictor.model.postprocess_masks(
|
| 450 |
+
sim,
|
| 451 |
+
input_size=predictor.input_size,
|
| 452 |
+
original_size=predictor.original_size).squeeze()
|
| 453 |
+
|
| 454 |
+
# Positive location prior ์์ฑ ์์น ์ฐ์ ๊ฐ
|
| 455 |
+
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
|
| 456 |
+
print("์ขํ๊ฐ",topk_xy)
|
| 457 |
+
|
| 458 |
+
# First-step prediction
|
| 459 |
+
masks, scores, logits, logits_high = predictor.predict(
|
| 460 |
+
point_coords=topk_xy,
|
| 461 |
+
point_labels=topk_label,
|
| 462 |
+
multimask_output=True)
|
| 463 |
+
|
| 464 |
+
# ์์ธก ์ ์ ์ถ๋ ฅ
|
| 465 |
+
# print("์์ธก ์ ์ (scores):")
|
| 466 |
+
# for idx, score in enumerate(scores):
|
| 467 |
+
# print(f"Mask {idx + 1}: {score.item():.4f}")
|
| 468 |
+
|
| 469 |
+
|
| 470 |
+
# Weighted sum three-scale masks ์ธ ๊ฐ์ง ์ค์ผ์ผ์ ๋ง์คํฌ๋ฅผ ๊ฐ์ค์น ํฉ์ฐํ๋ ๊ณผ์
|
| 471 |
+
logits_high = logits_high * weights.unsqueeze(-1)
|
| 472 |
+
logit_high = logits_high.sum(0)
|
| 473 |
+
mask = (logit_high > 0).detach().cpu().numpy()
|
| 474 |
+
|
| 475 |
+
logits = logits * weights_np[..., None]
|
| 476 |
+
logit = logits.sum(0)
|
| 477 |
+
|
| 478 |
+
# Cascaded Post-refinement-1 ๋ชจ๋ธ์ ์ธ๋ถํ๋ ํ์ฒ๋ฆฌ ๋จ๊ณ ์ค ์ฒซ ๋ฒ์งธ ๋จ๊ณ
|
| 479 |
+
y, x = np.nonzero(mask)
|
| 480 |
+
x_min = x.min()
|
| 481 |
+
x_max = x.max()
|
| 482 |
+
y_min = y.min()
|
| 483 |
+
y_max = y.max()
|
| 484 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
| 485 |
+
masks, scores, logits, _ = predictor.predict(
|
| 486 |
+
point_coords=topk_xy,
|
| 487 |
+
point_labels=topk_label,
|
| 488 |
+
box=input_box[None, :],
|
| 489 |
+
mask_input=logit[None, :, :],
|
| 490 |
+
multimask_output=True)
|
| 491 |
+
best_idx = np.argmax(scores)
|
| 492 |
+
|
| 493 |
+
# Cascaded Post-refinement-2 ๋ชจ๋ธ์ ์ธ๋ถํ๋ ํ์ฒ๋ฆฌ ๋จ๊ณ ์ค ๋ ๋ฒ์งธ ๋จ๊ณ
|
| 494 |
+
y, x = np.nonzero(masks[best_idx])
|
| 495 |
+
x_min = x.min()
|
| 496 |
+
x_max = x.max()
|
| 497 |
+
y_min = y.min()
|
| 498 |
+
y_max = y.max()
|
| 499 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
| 500 |
+
masks, scores, logits, _ = predictor.predict(
|
| 501 |
+
point_coords=topk_xy,
|
| 502 |
+
point_labels=topk_label,
|
| 503 |
+
box=input_box[None, :],
|
| 504 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
| 505 |
+
multimask_output=True)
|
| 506 |
+
best_idx = np.argmax(scores)
|
| 507 |
+
|
| 508 |
+
final_mask = masks[best_idx]
|
| 509 |
+
|
| 510 |
+
# ์์ธก ์ ์ ์ถ๋ ฅ
|
| 511 |
+
print("์์ธก ์ ์ (scores):")
|
| 512 |
+
for idx, score in enumerate(scores):
|
| 513 |
+
print(f"Mask {idx + 1}: {score.item():.4f}")
|
| 514 |
+
# Final mask์ ์ขํ ์ถ์ถ
|
| 515 |
+
# y_coords, x_coords = np.nonzero(final_mask)
|
| 516 |
+
# # ์ขํ๋ฅผ (y, x) ํ์์ผ๋ก ๋ฌถ์ด์ ์ถ๋ ฅ
|
| 517 |
+
# coordinates = list(zip(y_coords, x_coords))
|
| 518 |
+
# # ์ขํ ์ถ๋ ฅ
|
| 519 |
+
# print("Segmentation๋ ์ขํ๋ค:")
|
| 520 |
+
# for coord in coordinates:
|
| 521 |
+
# print(coord)
|
| 522 |
+
|
| 523 |
+
# Image ์์ฑ ๋ฐ ์ ์ ํ์
|
| 524 |
+
output_img = Image.fromarray((test_image).astype('uint8'), 'RGB')
|
| 525 |
+
draw = ImageDraw.Draw(output_img)
|
| 526 |
+
|
| 527 |
+
# ์ ๋ขฐ๋ ์ ์๋ฅผ ๋ง์คํฌ ์์ญ ์์ ํ์
|
| 528 |
+
for idx, (mask, score) in enumerate(zip(masks, scores)):
|
| 529 |
+
y, x = np.nonzero(mask)
|
| 530 |
+
if len(x) > 0 and len(y) > 0: # ๋ง์คํฌ๊ฐ ๋น์ด์์ง ์์ ๋๋ง ํ
์คํธ ํ์
|
| 531 |
+
x_center = int(x.mean())
|
| 532 |
+
y_center = int(y.mean())
|
| 533 |
+
draw.text((x_center, y_center), f"{score.item():.2f}", fill=(255, 255, 0))
|
| 534 |
+
# ์ต์ข
๋ง์คํฌ ๋ฐ ์ ์๊ฐ ํฌํจ๋ ์ด๋ฏธ์ง๋ฅผ ๋ฆฌ์คํธ์ ์ถ๊ฐ
|
| 535 |
+
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
|
| 536 |
+
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
|
| 537 |
+
overlay_image = Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB')
|
| 538 |
+
draw_overlay = ImageDraw.Draw(overlay_image)
|
| 539 |
+
|
| 540 |
+
for idx, score in enumerate(scores):
|
| 541 |
+
draw_overlay.text((10, 10 + 20 * idx), f"Mask {idx + 1}: {score.item():.2f}", fill=(255, 255, 0))
|
| 542 |
+
|
| 543 |
+
output_image.append(overlay_image)
|
| 544 |
+
|
| 545 |
+
# output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
|
| 546 |
+
|
| 547 |
+
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224))
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
# ์ปจํฌ์ด์ ๋ฐ์ด๋ฉ ๋ฐ์ค๋ฅผ ๊ทธ๋ฆฌ๋ ํจ์
|
| 551 |
+
def draw_contours_and_bboxes(image, mask):
|
| 552 |
+
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 553 |
+
|
| 554 |
+
# ๊ฐ์ฒด ์ ๊ณ์ฐ
|
| 555 |
+
object_count = len(contours)
|
| 556 |
+
|
| 557 |
+
# ์ด๋ฏธ์ง์ ์ปจํฌ์ด์ ๋ฐ์ด๋ฉ ๋ฐ์ค๋ฅผ ๊ทธ๋ฆฌ๊ธฐ
|
| 558 |
+
for contour in contours:
|
| 559 |
+
# ๋ฐ์ด๋ฉ ๋ฐ์ค
|
| 560 |
+
x, y, w, h = cv2.boundingRect(contour)
|
| 561 |
+
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) # ์ด๋ก์ ๋ฐ์ด๋ฉ ๋ฐ์ค
|
| 562 |
+
|
| 563 |
+
# ์ปจํฌ์ด ๊ทธ๋ฆฌ๊ธฐ
|
| 564 |
+
cv2.drawContours(image, [contour], -1, (0, 0, 255), 2) # ๋นจ๊ฐ์ ์ปจํฌ์ด
|
| 565 |
+
|
| 566 |
+
return image, object_count
|
| 567 |
+
|
| 568 |
+
def inference_finetune_test(image1, image2, image3, image4):
|
| 569 |
+
# in context image and mask
|
| 570 |
+
# ic_image = np.array(ic_image.convert("RGB"))
|
| 571 |
+
# ic_mask = np.array(ic_mask.convert("RGB"))
|
| 572 |
+
|
| 573 |
+
# gt_mask = torch.tensor(ic_mask)[:, :, 0] > 0
|
| 574 |
+
# gt_mask = gt_mask.float().unsqueeze(0).flatten(1).to('cpu')
|
| 575 |
+
# # gt_mask = gt_mask.float().unsqueeze(0).flatten(1)
|
| 576 |
+
|
| 577 |
+
sam_type, sam_ckpt = 'vit_h', 'sam_vit_h_4b8939.pth'
|
| 578 |
+
sam = sam_model_registry[sam_type](checkpoint=sam_ckpt).to('cpu')
|
| 579 |
+
# # sam = sam_model_registry[sam_type](checkpoint=sam_ckpt)
|
| 580 |
+
# for name, param in sam.named_parameters():
|
| 581 |
+
# param.requires_grad = False
|
| 582 |
+
predictor = SamPredictor(sam)
|
| 583 |
+
|
| 584 |
+
# #์๊ธฐ ์์น ์ฐ์ ๊ฐ ํ๋
|
| 585 |
+
print("======> Obtain Self Location Prior" )
|
| 586 |
+
# Image features encoding
|
| 587 |
+
# ref_mask = predictor.set_image(ic_image, ic_mask)
|
| 588 |
+
# ref_feat = predictor.features.squeeze().permute(1, 2, 0)
|
| 589 |
+
|
| 590 |
+
# ref_mask = F.interpolate(ref_mask, size=ref_feat.shape[0: 2], mode="bilinear")
|
| 591 |
+
# ref_mask = ref_mask.squeeze()[0]
|
| 592 |
+
|
| 593 |
+
# # Target feature extraction
|
| 594 |
+
# target_feat = ref_feat[ref_mask > 0]
|
| 595 |
+
# target_feat_mean = target_feat.mean(0)
|
| 596 |
+
# target_feat_max = torch.max(target_feat, dim=0)[0]
|
| 597 |
+
# target_feat = (target_feat_max / 2 + target_feat_mean / 2).unsqueeze(0)
|
| 598 |
+
|
| 599 |
+
# # Cosine similarity
|
| 600 |
+
# h, w, C = ref_feat.shape
|
| 601 |
+
# target_feat = target_feat / target_feat.norm(dim=-1, keepdim=True)
|
| 602 |
+
# ref_feat = ref_feat / ref_feat.norm(dim=-1, keepdim=True)
|
| 603 |
+
# ref_feat = ref_feat.permute(2, 0, 1).reshape(C, h * w)
|
| 604 |
+
# sim = target_feat @ ref_feat
|
| 605 |
+
|
| 606 |
+
# sim = sim.reshape(1, 1, h, w)
|
| 607 |
+
# sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
| 608 |
+
# sim = predictor.model.postprocess_masks(
|
| 609 |
+
# sim,
|
| 610 |
+
# input_size=predictor.input_size,
|
| 611 |
+
# original_size=predictor.original_size).squeeze()
|
| 612 |
+
|
| 613 |
+
# # Positive location prior
|
| 614 |
+
# topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
|
| 615 |
+
|
| 616 |
+
# print('======> Start Training')
|
| 617 |
+
# # Learnable mask weights
|
| 618 |
+
# mask_weights = Mask_Weights().to('cpu')
|
| 619 |
+
# # mask_weights = Mask_Weights()
|
| 620 |
+
# mask_weights.train()
|
| 621 |
+
# train_epoch = 1000
|
| 622 |
+
# optimizer = torch.optim.AdamW(mask_weights.parameters(), lr=1e-4, eps=1e-4, betas=(0.9, 0.999), weight_decay=0.01, amsgrad=False)
|
| 623 |
+
# scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, train_epoch)
|
| 624 |
+
|
| 625 |
+
# for train_idx in range(train_epoch):
|
| 626 |
+
# # Run the decoder
|
| 627 |
+
# masks, scores, logits, logits_high = predictor.predict(
|
| 628 |
+
# point_coords=topk_xy,
|
| 629 |
+
# point_labels=topk_label,
|
| 630 |
+
# multimask_output=True)
|
| 631 |
+
# logits_high = logits_high.flatten(1)
|
| 632 |
+
|
| 633 |
+
# # Weighted sum three-scale masks
|
| 634 |
+
# weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
| 635 |
+
# logits_high = logits_high * weights
|
| 636 |
+
# logits_high = logits_high.sum(0).unsqueeze(0)
|
| 637 |
+
|
| 638 |
+
# dice_loss = calculate_dice_loss(logits_high, gt_mask)
|
| 639 |
+
# focal_loss = calculate_sigmoid_focal_loss(logits_high, gt_mask)
|
| 640 |
+
# loss = dice_loss + focal_loss
|
| 641 |
+
|
| 642 |
+
# optimizer.zero_grad()
|
| 643 |
+
# loss.backward()
|
| 644 |
+
# optimizer.step()
|
| 645 |
+
# scheduler.step()
|
| 646 |
+
|
| 647 |
+
# if train_idx % 10 == 0:
|
| 648 |
+
# print('Train Epoch: {:} / {:}'.format(train_idx, train_epoch))
|
| 649 |
+
# current_lr = scheduler.get_last_lr()[0]
|
| 650 |
+
# print('LR: {:.6f}, Dice_Loss: {:.4f}, Focal_Loss: {:.4f}'.format(current_lr, dice_loss.item(), focal_loss.item()))
|
| 651 |
+
|
| 652 |
+
|
| 653 |
+
# mask_weights.eval()
|
| 654 |
+
# weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
| 655 |
+
# weights_np = weights.detach().cpu().numpy()
|
| 656 |
+
# print('======> Mask weights:\n', weights_np)
|
| 657 |
+
|
| 658 |
+
# # 1. ๊ฐ์ค์น ์ ์ฅ
|
| 659 |
+
# torch.save(mask_weights.state_dict(), 'mask_weights.pth')
|
| 660 |
+
# print("๊ฐ์ค์น๊ฐ 'mask_weights.pth' ํ์ผ๋ก ์ ์ฅ๋์์ต๋๋ค.")
|
| 661 |
+
|
| 662 |
+
#########################Training ๋ ########################################
|
| 663 |
+
# 2. ํ
์คํธ ์ ์ฉ ์ฝ๋
|
| 664 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ ๋ฐ ๊ฐ์ค์น ๋ก๋
|
| 665 |
+
mask_weights = Mask_Weights().to('cpu')
|
| 666 |
+
mask_weights.load_state_dict(torch.load('Personalize-SAM\mask_weights.pth'))
|
| 667 |
+
mask_weights.eval() # ํ๊ฐ ๋ชจ๋๋ก ์ค์ (์ถ๊ฐ ํ์ต ๋ฐฉ์ง)
|
| 668 |
+
|
| 669 |
+
weights = torch.cat((1 - mask_weights.weights.sum(0).unsqueeze(0), mask_weights.weights), dim=0)
|
| 670 |
+
weights_np = weights.detach().cpu().numpy()
|
| 671 |
+
print('======> Mask weights:\n', weights_np)
|
| 672 |
+
|
| 673 |
+
print('======> Start Testing')
|
| 674 |
+
output_image = []
|
| 675 |
+
|
| 676 |
+
# SAM Segmentation ๊ฒฐ๊ณผ๋ฅผ ์ ์ฅํ dictionary
|
| 677 |
+
segmentation_results = []
|
| 678 |
+
|
| 679 |
+
for test_image in [image1, image2, image3, image4]:
|
| 680 |
+
test_image = np.array(test_image.convert("RGB"))
|
| 681 |
+
|
| 682 |
+
# Image feature encoding
|
| 683 |
+
predictor.set_image(test_image)
|
| 684 |
+
test_feat = predictor.features.squeeze()
|
| 685 |
+
# Image feature encoding
|
| 686 |
+
predictor.set_image(test_image)
|
| 687 |
+
test_feat = predictor.features.squeeze()
|
| 688 |
+
|
| 689 |
+
# Cosine similarity
|
| 690 |
+
C, h, w = test_feat.shape
|
| 691 |
+
test_feat = test_feat / test_feat.norm(dim=0, keepdim=True)
|
| 692 |
+
test_feat = test_feat.reshape(C, h * w)
|
| 693 |
+
# target_feat ๋ถ๋ฌ์ค๊ธฐ
|
| 694 |
+
target_feat = torch.load('Personalize-SAM\\target_feat.pth')
|
| 695 |
+
sim = target_feat @ test_feat
|
| 696 |
+
|
| 697 |
+
sim = sim.reshape(1, 1, h, w)
|
| 698 |
+
sim = F.interpolate(sim, scale_factor=4, mode="bilinear")
|
| 699 |
+
sim = predictor.model.postprocess_masks(
|
| 700 |
+
sim,
|
| 701 |
+
input_size=predictor.input_size,
|
| 702 |
+
original_size=predictor.original_size).squeeze()
|
| 703 |
+
|
| 704 |
+
# Positive location prior ์์ฑ ์์น ์ฐ์ ๊ฐ
|
| 705 |
+
topk_xy, topk_label, _, _ = point_selection(sim, topk=1)
|
| 706 |
+
print("์ขํ๊ฐ",topk_xy)
|
| 707 |
+
|
| 708 |
+
# First-step prediction
|
| 709 |
+
masks, scores, logits, logits_high = predictor.predict(
|
| 710 |
+
point_coords=topk_xy,
|
| 711 |
+
point_labels=topk_label,
|
| 712 |
+
multimask_output=True)
|
| 713 |
+
|
| 714 |
+
# ์์ธก ์ ์ ์ถ๋ ฅ
|
| 715 |
+
# print("์์ธก ์ ์ (scores):")
|
| 716 |
+
# for idx, score in enumerate(scores):
|
| 717 |
+
# print(f"Mask {idx + 1}: {score.item():.4f}")
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
# Weighted sum three-scale masks ์ธ ๊ฐ์ง ์ค์ผ์ผ์ ๋ง์คํฌ๋ฅผ ๊ฐ์ค์น ํฉ์ฐํ๋ ๊ณผ์
|
| 721 |
+
logits_high = logits_high * weights.unsqueeze(-1)
|
| 722 |
+
logit_high = logits_high.sum(0)
|
| 723 |
+
mask = (logit_high > 0).detach().cpu().numpy()
|
| 724 |
+
|
| 725 |
+
logits = logits * weights_np[..., None]
|
| 726 |
+
logit = logits.sum(0)
|
| 727 |
+
|
| 728 |
+
# Cascaded Post-refinement-1 ๋ชจ๋ธ์ ์ธ๋ถํ๋ ํ์ฒ๋ฆฌ ๋จ๊ณ ์ค ์ฒซ ๋ฒ์งธ ๋จ๊ณ
|
| 729 |
+
y, x = np.nonzero(mask)
|
| 730 |
+
x_min = x.min()
|
| 731 |
+
x_max = x.max()
|
| 732 |
+
y_min = y.min()
|
| 733 |
+
y_max = y.max()
|
| 734 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
| 735 |
+
masks, scores, logits, _ = predictor.predict(
|
| 736 |
+
point_coords=topk_xy,
|
| 737 |
+
point_labels=topk_label,
|
| 738 |
+
box=input_box[None, :],
|
| 739 |
+
mask_input=logit[None, :, :],
|
| 740 |
+
multimask_output=True)
|
| 741 |
+
best_idx = np.argmax(scores)
|
| 742 |
+
|
| 743 |
+
# Cascaded Post-refinement-2 ๋ชจ๋ธ์ ์ธ๋ถํ๋ ํ์ฒ๋ฆฌ ๋จ๊ณ ์ค ๋ ๋ฒ์งธ ๋จ๊ณ
|
| 744 |
+
y, x = np.nonzero(masks[best_idx])
|
| 745 |
+
x_min = x.min()
|
| 746 |
+
x_max = x.max()
|
| 747 |
+
y_min = y.min()
|
| 748 |
+
y_max = y.max()
|
| 749 |
+
input_box = np.array([x_min, y_min, x_max, y_max])
|
| 750 |
+
masks, scores, logits, _ = predictor.predict(
|
| 751 |
+
point_coords=topk_xy,
|
| 752 |
+
point_labels=topk_label,
|
| 753 |
+
box=input_box[None, :],
|
| 754 |
+
mask_input=logits[best_idx: best_idx + 1, :, :],
|
| 755 |
+
multimask_output=True)
|
| 756 |
+
best_idx = np.argmax(scores)
|
| 757 |
+
|
| 758 |
+
final_mask = masks[best_idx]
|
| 759 |
+
|
| 760 |
+
# ๊ฒฐ๊ณผ๋ฅผ JSON ํ์์ผ๋ก ์ ์ฅํ dictionary
|
| 761 |
+
result = {
|
| 762 |
+
"image": f"image_{test_image}", # ์ด๋ฏธ์ง๋ฅผ ๊ตฌ๋ถํ ์ ์๋ ๏ฟฝ๏ฟฝ์ ํ ์ด๋ฆ์ ์ฌ์ฉ
|
| 763 |
+
"masks": [],
|
| 764 |
+
"scores": [],
|
| 765 |
+
"coordinates": []
|
| 766 |
+
}
|
| 767 |
+
|
| 768 |
+
for idx, (mask, score) in enumerate(zip(masks, scores)):
|
| 769 |
+
mask_coords = np.array(np.nonzero(mask)).T.tolist() # ๋ง์คํฌ ์ขํ๋ฅผ (y, x) ํ์์ผ๋ก ์ถ์ถ
|
| 770 |
+
result["masks"].append(mask_coords)
|
| 771 |
+
result["scores"].append(score.item())
|
| 772 |
+
|
| 773 |
+
# ๊ฐ ๋ง์คํฌ์ ๋ํด ์ขํ ์ ๋ณด ์ถ๊ฐ
|
| 774 |
+
result["coordinates"].append(mask_coords)
|
| 775 |
+
|
| 776 |
+
# ๊ฐ ๋ง์คํฌ์ ์ค์ฌ ์ขํ ๊ณ์ฐ
|
| 777 |
+
if mask_coords: # ์ขํ๊ฐ ์กด์ฌํ๋ ๊ฒฝ์ฐ
|
| 778 |
+
y_coords, x_coords = zip(*mask_coords)
|
| 779 |
+
center_y = int(np.mean(y_coords))
|
| 780 |
+
center_x = int(np.mean(x_coords))
|
| 781 |
+
|
| 782 |
+
# ์ด๋ฏธ์ง์ ์ค์ฌ ์ขํ ํ์
|
| 783 |
+
output_img = Image.fromarray((test_image).astype('uint8'), 'RGB')
|
| 784 |
+
draw = ImageDraw.Draw(output_img)
|
| 785 |
+
draw.text((center_x, center_y), f"({center_x}, {center_y})", fill=(255, 0, 0))
|
| 786 |
+
|
| 787 |
+
# ํ์๋ ์ด๋ฏธ์ง๋ฅผ ์ถ๋ ฅ
|
| 788 |
+
output_image.append(output_img)
|
| 789 |
+
|
| 790 |
+
segmentation_results.append(result)
|
| 791 |
+
|
| 792 |
+
# JSON ํ์ผ๋ก ์ ์ฅ
|
| 793 |
+
with open("segmentation_results.json", "w") as f:
|
| 794 |
+
json.dump(segmentation_results, f, indent=4)
|
| 795 |
+
|
| 796 |
+
print("Segmentation results saved as 'segmentation_results.json'")
|
| 797 |
+
|
| 798 |
+
# ์์ธก ์ ์ ์ถ๋ ฅ
|
| 799 |
+
print("์์ธก ์ ์ (scores):")
|
| 800 |
+
for idx, score in enumerate(scores):
|
| 801 |
+
print(f"Mask {idx + 1}: {score.item():.4f}")
|
| 802 |
+
# Final mask์ ์ขํ ์ถ์ถ
|
| 803 |
+
# y_coords, x_coords = np.nonzero(final_mask)
|
| 804 |
+
# # ์ขํ๋ฅผ (y, x) ํ์์ผ๋ก ๋ฌถ์ด์ ์ถ๋ ฅ
|
| 805 |
+
# coordinates = list(zip(y_coords, x_coords))
|
| 806 |
+
# # ์ขํ ์ถ๋ ฅ
|
| 807 |
+
# print("Segmentation๋ ์ขํ๋ค:")
|
| 808 |
+
# for coord in coordinates:
|
| 809 |
+
# print(coord)
|
| 810 |
+
|
| 811 |
+
# Image ์์ฑ ๋ฐ ์ ์ ํ์
|
| 812 |
+
output_img = Image.fromarray((test_image).astype('uint8'), 'RGB')
|
| 813 |
+
draw = ImageDraw.Draw(output_img)
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
# segmentation๋ ๊ฐ์ฒด์ ๊ฐ์ ๊ณ์ฐ
|
| 817 |
+
segmented_count = sum((mask.sum() > 0) for mask in masks) # ํฝ์
ํฉ์ด 0๋ณด๋ค ํฐ ๊ฒฝ์ฐ ์ ํจํ segmentation์ผ๋ก ๊ฐ์ฃผ
|
| 818 |
+
# draw.text((170, 10), f"Cnt: {segmented_count}", fill=(255, 0, 0)) # segmentation ๊ฐ์ ํ๊ธฐ
|
| 819 |
+
|
| 820 |
+
|
| 821 |
+
# ์ ๋ขฐ๋ ์ ์๋ฅผ ๋ง์คํฌ ์์ญ ์์ ํ์
|
| 822 |
+
for idx, (mask, score) in enumerate(zip(masks, scores)):
|
| 823 |
+
y, x = np.nonzero(mask)
|
| 824 |
+
if len(x) > 0 and len(y) > 0: # ๋ง์คํฌ๊ฐ ๋น์ด์์ง ์์ ๋๋ง ํ
์คํธ ํ์
|
| 825 |
+
x_center = int(x.mean())
|
| 826 |
+
y_center = int(y.mean())
|
| 827 |
+
# draw.text((x_center, y_center), f"{score.item():.2f}", fill=(255, 255, 0))
|
| 828 |
+
|
| 829 |
+
|
| 830 |
+
# ์ต์ข
๋ง์คํฌ ๋ฐ ์ ์๊ฐ ํฌํจ๋ ์ด๋ฏธ์ง๋ฅผ ๋ฆฌ์คํธ์ ์ถ๊ฐ
|
| 831 |
+
mask_colors = np.zeros((final_mask.shape[0], final_mask.shape[1], 3), dtype=np.uint8)
|
| 832 |
+
mask_colors[final_mask, :] = np.array([[128, 0, 0]])
|
| 833 |
+
|
| 834 |
+
|
| 835 |
+
# red ๋ง์คํฌ ์์ญ ์ธ์ ๋ถ๋ถ์ ๋ํด์ contour ๋ฐ bounding box ์ ์ฉ
|
| 836 |
+
test_image_np = np.array(test_image)
|
| 837 |
+
|
| 838 |
+
# 'final_mask' ์ธ๋ถ๋ฅผ ๋ง์คํฌ ์์ญ์ผ๋ก ์ง์
|
| 839 |
+
final_mask_obj = final_mask.astype(np.uint8)
|
| 840 |
+
|
| 841 |
+
# inverse_mask์ ๋ํด์ ์ปจํฌ์ด ๋ฐ ๋ฐ์ด๋ฉ ๋ฐ์ค๋ฅผ ๊ทธ๋ฆผ
|
| 842 |
+
overlay_image, object_count = draw_contours_and_bboxes(test_image_np.copy(), final_mask_obj)
|
| 843 |
+
|
| 844 |
+
# ๊ฐ์ฒด ๊ฐ์ ์ถ๋ ฅ
|
| 845 |
+
print(f"Detected {object_count} objects in the background.")
|
| 846 |
+
|
| 847 |
+
# ์ต์ข
์ด๋ฏธ์ง ๋ฐ ์ ์ ํ์
|
| 848 |
+
overlay_image = Image.fromarray(overlay_image)
|
| 849 |
+
|
| 850 |
+
# segmentation๋ ๊ฐ์ฒด ๊ฐ์๋ฅผ ๋ค์ ํ๋ฒ ํ๊ธฐ (์ด๋ฏธ์ง ์ฐ์๋จ ๋ฑ ๋ค๋ฅธ ์์น์)
|
| 851 |
+
draw_overlay = ImageDraw.Draw(overlay_image)
|
| 852 |
+
draw_overlay.text((170, 10), f"Cnt: {segmented_count}", fill=(255, 255, 0))
|
| 853 |
+
|
| 854 |
+
for idx, score in enumerate(scores):
|
| 855 |
+
draw_overlay.text((10, 10 + 20 * idx), f"Mask {idx + 1}: {score.item():.2f}", fill=(255, 255, 0))
|
| 856 |
+
|
| 857 |
+
output_image.append(overlay_image)
|
| 858 |
+
|
| 859 |
+
|
| 860 |
+
# overlay_image = Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB')
|
| 861 |
+
# draw_overlay = ImageDraw.Draw(overlay_image)
|
| 862 |
+
|
| 863 |
+
# # segmentation๋ ๊ฐ์ฒด ๊ฐ์๋ฅผ ๋ค์ ํ๋ฒ ํ๊ธฐ (์ด๋ฏธ์ง ์ฐ์๋จ ๋ฑ ๋ค๋ฅธ ์์น์)
|
| 864 |
+
# draw_overlay.text((170, 10), f"Cnt: {segmented_count}", fill=(255, 255, 0))
|
| 865 |
+
|
| 866 |
+
|
| 867 |
+
|
| 868 |
+
# for idx, score in enumerate(scores):
|
| 869 |
+
# draw_overlay.text((10, 10 + 20 * idx), f"Mask {idx + 1}: {score.item():.2f}", fill=(255, 255, 0))
|
| 870 |
+
|
| 871 |
+
# output_image.append(overlay_image)
|
| 872 |
+
|
| 873 |
+
# output_image.append(Image.fromarray((mask_colors * 0.6 + test_image * 0.4).astype('uint8'), 'RGB'))
|
| 874 |
+
|
| 875 |
+
return output_image[0].resize((224, 224)), output_image[1].resize((224, 224)), output_image[2].resize((224, 224)), output_image[3].resize((224, 224))
|
| 876 |
+
|
| 877 |
+
|
| 878 |
+
|
| 879 |
+
description = """
|
| 880 |
+
<div style="text-align: center; font-weight: bold;">
|
| 881 |
+
<span style="font-size: 18px" id="paper-info">
|
| 882 |
+
[<a href="https://github.com/ZrrSkywalker/Personalize-SAM" target="_blank"><font color='black'>Github</font></a>]
|
| 883 |
+
[<a href="https://arxiv.org/pdf/2305.03048.pdf" target="_blank"><font color='black'>Paper</font></a>]
|
| 884 |
+
</span>
|
| 885 |
+
</div>
|
| 886 |
+
"""
|
| 887 |
+
|
| 888 |
+
main = gr.Interface(
|
| 889 |
+
fn=inference,
|
| 890 |
+
inputs=[
|
| 891 |
+
gr.Image(type="pil", label="in context image",),
|
| 892 |
+
gr.Image(type="pil", label="in context mask"),
|
| 893 |
+
gr.Image(type="pil", label="test image1"),
|
| 894 |
+
gr.Image(type="pil", label="test image2"),
|
| 895 |
+
],
|
| 896 |
+
outputs=[
|
| 897 |
+
gr.Image(type="pil", label="output image1"),
|
| 898 |
+
gr.Image(type="pil", label="output image2"),
|
| 899 |
+
],
|
| 900 |
+
allow_flagging="never",
|
| 901 |
+
title="Personalize Segment Anything Model with 1 Shot",
|
| 902 |
+
description=description,
|
| 903 |
+
examples=[
|
| 904 |
+
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
|
| 905 |
+
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
|
| 906 |
+
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
|
| 907 |
+
]
|
| 908 |
+
)
|
| 909 |
+
|
| 910 |
+
main_scribble = gr.Interface(
|
| 911 |
+
fn=inference_scribble,
|
| 912 |
+
inputs=[
|
| 913 |
+
gr.ImageMask(label="[Stroke] Draw on Image", type="pil"),
|
| 914 |
+
gr.Image(type="pil", label="test image1"),
|
| 915 |
+
gr.Image(type="pil", label="test image2"),
|
| 916 |
+
],
|
| 917 |
+
outputs=[
|
| 918 |
+
gr.Image(type="pil", label="output image1"),
|
| 919 |
+
gr.Image(type="pil", label="output image2"),
|
| 920 |
+
],
|
| 921 |
+
allow_flagging="never",
|
| 922 |
+
title="Personalize Segment Anything Model with 1 Shot",
|
| 923 |
+
description=description,
|
| 924 |
+
examples=[
|
| 925 |
+
["./examples/cat_00.jpg", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
|
| 926 |
+
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
|
| 927 |
+
["./examples/duck_toy_00.jpg", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
|
| 928 |
+
]
|
| 929 |
+
)
|
| 930 |
+
|
| 931 |
+
main_finetune_train = gr.Interface(
|
| 932 |
+
fn=inference_finetune_train,
|
| 933 |
+
inputs=[
|
| 934 |
+
gr.Image(type="pil", label="in context image"),
|
| 935 |
+
gr.Image(type="pil", label="in context mask"),
|
| 936 |
+
gr.Image(type="pil", label="test image1"),
|
| 937 |
+
gr.Image(type="pil", label="test image2"),
|
| 938 |
+
],
|
| 939 |
+
outputs=[
|
| 940 |
+
gr.components.Image(type="pil", label="output image1"),
|
| 941 |
+
gr.components.Image(type="pil", label="output image2"),
|
| 942 |
+
],
|
| 943 |
+
allow_flagging="never",
|
| 944 |
+
title="Personalize Segment Anything Model with 1 Shot Train",
|
| 945 |
+
description=description,
|
| 946 |
+
examples=[
|
| 947 |
+
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
|
| 948 |
+
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
|
| 949 |
+
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
|
| 950 |
+
]
|
| 951 |
+
)
|
| 952 |
+
|
| 953 |
+
|
| 954 |
+
|
| 955 |
+
main_finetune_test = gr.Interface(
|
| 956 |
+
fn=inference_finetune_test,
|
| 957 |
+
inputs=[
|
| 958 |
+
gr.Image(type="pil", label="test image1"),
|
| 959 |
+
gr.Image(type="pil", label="test image2"),
|
| 960 |
+
gr.Image(type="pil", label="test image3"),
|
| 961 |
+
gr.Image(type="pil", label="test image4"),
|
| 962 |
+
],
|
| 963 |
+
outputs=[
|
| 964 |
+
gr.components.Image(type="pil", label="output image1"),
|
| 965 |
+
gr.components.Image(type="pil", label="output image2"),
|
| 966 |
+
gr.components.Image(type="pil", label="output image3"),
|
| 967 |
+
gr.components.Image(type="pil", label="output image4"),
|
| 968 |
+
],
|
| 969 |
+
allow_flagging="never",
|
| 970 |
+
title="Personalize Segment Anything Model with 1 Shot Test",
|
| 971 |
+
description=description,
|
| 972 |
+
examples=[
|
| 973 |
+
["./examples/cat_00.jpg", "./examples/cat_00.png", "./examples/cat_01.jpg", "./examples/cat_02.jpg"],
|
| 974 |
+
["./examples/colorful_sneaker_00.jpg", "./examples/colorful_sneaker_00.png", "./examples/colorful_sneaker_01.jpg", "./examples/colorful_sneaker_02.jpg"],
|
| 975 |
+
["./examples/duck_toy_00.jpg", "./examples/duck_toy_00.png", "./examples/duck_toy_01.jpg", "./examples/duck_toy_02.jpg"],
|
| 976 |
+
]
|
| 977 |
+
)
|
| 978 |
+
|
| 979 |
+
|
| 980 |
+
demo = gr.Blocks()
|
| 981 |
+
with demo:
|
| 982 |
+
gr.TabbedInterface(
|
| 983 |
+
[main_finetune_train, main_finetune_test],
|
| 984 |
+
["Personalize-SAM-F_train", "Personalize-SAM-F_test"],
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
demo.launch(share=True)
|