Update app.txt
Browse files
app.txt
CHANGED
|
@@ -1,124 +1,104 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import joblib
|
| 3 |
-
import
|
| 4 |
|
| 5 |
# Load the model
|
| 6 |
-
model = joblib.load('
|
| 7 |
-
|
| 8 |
-
# Load the encoder
|
| 9 |
-
encoder = joblib.load('encoder.pkl')
|
| 10 |
-
|
| 11 |
-
# Define classes for accident prediction
|
| 12 |
-
classes = ["No", "Yes"]
|
| 13 |
|
| 14 |
# Create the inputs list with dropdown menus and sliders
|
| 15 |
inputs = [
|
| 16 |
gr.Dropdown(
|
| 17 |
-
choices=['
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
gr.Dropdown(
|
| 21 |
-
choices=['Pedestrian', 'Bicycles', 'Two Wheelers', 'Auto Rickshaws', 'Cars, Taxis, Vans & LMV', 'Trucks, Lorries', 'Buses', 'Non-motorized Vehicles', 'Others'],
|
| 22 |
-
label="Impact Type"
|
| 23 |
-
),
|
| 24 |
-
gr.Dropdown(
|
| 25 |
-
choices=['Speeding', 'Jumping Red Light', 'Distracted Driving', 'Drunk Driving', 'Other'],
|
| 26 |
-
label="Traffic Violations"
|
| 27 |
),
|
| 28 |
gr.Dropdown(
|
| 29 |
-
choices=['
|
| 30 |
-
|
|
|
|
| 31 |
),
|
| 32 |
-
gr.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
),
|
| 36 |
-
gr.
|
| 37 |
-
choices=['Traffic Light Signal', 'Police Controlled', 'Stop Sign', 'Flashing Signal/Blinker', 'Uncontrolled', 'Others'],
|
| 38 |
-
label="Traffic Controls"
|
| 39 |
-
),
|
| 40 |
-
gr.Dropdown(
|
| 41 |
-
choices=['morning', 'afternoon', 'evening', 'night'],
|
| 42 |
-
label="Time of Day"
|
| 43 |
-
),
|
| 44 |
-
gr.Dropdown(
|
| 45 |
-
choices=['13-17', '18-25', '26-40', '41-60', '60-80', '80 above'],
|
| 46 |
-
label="Age Group"
|
| 47 |
-
),
|
| 48 |
-
gr.Dropdown(
|
| 49 |
-
choices=['Killed', 'Grievously Injured', 'Minor Injury'],
|
| 50 |
-
label="Injury Type"
|
| 51 |
-
),
|
| 52 |
-
gr.Dropdown(
|
| 53 |
-
choices=['Yes', 'No'],
|
| 54 |
-
label="Safety Features"
|
| 55 |
-
),
|
| 56 |
-
gr.Slider(minimum=-90, maximum=90, label="Latitude"),
|
| 57 |
-
gr.Slider(minimum=-180, maximum=180, label="Longitude"),
|
| 58 |
-
gr.Slider(minimum=1, maximum=10, step= 1, label="Person Count"),
|
| 59 |
]
|
| 60 |
|
| 61 |
-
# Define output label
|
| 62 |
-
output_label = gr.Label(num_top_classes=4)
|
| 63 |
|
| 64 |
# Create a function to make predictions
|
| 65 |
def predict_accident(
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
age_group,
|
| 74 |
-
injury,
|
| 75 |
-
safety_features,
|
| 76 |
-
Latitude,
|
| 77 |
-
Longitude,
|
| 78 |
-
person_count
|
| 79 |
):
|
| 80 |
-
data = {
|
| 81 |
-
'selectedWeatherCondition': weather_conditions,
|
| 82 |
-
'selectedImpactType': impact_type,
|
| 83 |
-
'selectedTrafficViolationType': traffic_violations,
|
| 84 |
-
'selectedRoadFeaturesType': road_features,
|
| 85 |
-
'selectedRoadJunctionType': junction_types,
|
| 86 |
-
'selectedTrafficControl': traffic_controls,
|
| 87 |
-
'selectedTimeOfDay': time_day,
|
| 88 |
-
'selectedAge': age_group,
|
| 89 |
-
'selectedInjuryType': injury,
|
| 90 |
-
'selectedSafetyFeature': safety_features,
|
| 91 |
-
'Latitude': Latitude,
|
| 92 |
-
'Longitude': Longitude,
|
| 93 |
-
'personCount': person_count
|
| 94 |
-
}
|
| 95 |
-
|
| 96 |
-
num_input = {'Latitude': data['Latitude'], 'Longitude': data['Longitude'], 'person_count': data['personCount']}
|
| 97 |
-
cat_input = {'weather_conditions': data['selectedWeatherCondition'], 'impact_type': data['selectedImpactType'],
|
| 98 |
-
'traffic_voilations': data['selectedTrafficViolationType'],
|
| 99 |
-
'road_features': data['selectedRoadFeaturesType'],
|
| 100 |
-
'junction_types': data['selectedRoadJunctionType'],
|
| 101 |
-
'traffic_controls': data['selectedTrafficControl'], 'time_day': data['selectedTimeOfDay'],
|
| 102 |
-
'age_group': data['selectedAge'], 'safety_features': data['selectedSafetyFeature'],
|
| 103 |
-
'injury': data['selectedInjuryType']}
|
| 104 |
-
|
| 105 |
-
input_df = pd.DataFrame([cat_input])
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
|
|
|
| 112 |
|
| 113 |
-
|
| 114 |
-
prediction = model.predict(input_with_coords)
|
| 115 |
-
|
| 116 |
-
label = f"Accident Prediction: {classes[int(prediction[0])]}"
|
| 117 |
return label
|
| 118 |
|
|
|
|
| 119 |
# Create the Gradio interface
|
| 120 |
-
title = "
|
| 121 |
-
description = "Predict the
|
| 122 |
output_label = [gr.Label(num_top_classes=4)]
|
| 123 |
gr.Interface(
|
| 124 |
fn=predict_accident,
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import joblib
|
| 3 |
+
import numpy as np
|
| 4 |
|
| 5 |
# Load the model
|
| 6 |
+
model = joblib.load('cricket_score_prediction_model.pkl')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
# Create the inputs list with dropdown menus and sliders
|
| 9 |
inputs = [
|
| 10 |
gr.Dropdown(
|
| 11 |
+
choices=['Afghanistan', 'Australia', 'Bangladesh', 'England', 'India', 'Ireland', 'New Zealand', 'Pakistan',
|
| 12 |
+
'South Africa', 'Sri Lanka', 'West Indies', 'Zimbabwe'],
|
| 13 |
+
label="Batting Team"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
),
|
| 15 |
gr.Dropdown(
|
| 16 |
+
choices=['Afghanistan', 'Australia', 'Bangladesh', 'England', 'India', 'Ireland', 'New Zealand', 'Pakistan',
|
| 17 |
+
'South Africa', 'Sri Lanka', 'West Indies', 'Zimbabwe'],
|
| 18 |
+
label="Bowling Team"
|
| 19 |
),
|
| 20 |
+
gr.Slider(minimum=0, maximum=400, step=1, label="Total Runs"),
|
| 21 |
+
gr.Slider(minimum=0, maximum=11, step=1, label="Total Wickets"),
|
| 22 |
+
gr.Slider(minimum=0.0, maximum=19.6, step=0.1, label="Overs"),
|
| 23 |
+
gr.Slider(minimum=0, maximum=200, step=1, label="Runs last 5 overs"),
|
| 24 |
+
gr.Slider(minimum=0, maximum=11,step=1, label="Wickets last 5 overs"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
]
|
| 26 |
|
|
|
|
|
|
|
| 27 |
|
| 28 |
# Create a function to make predictions
|
| 29 |
def predict_accident(
|
| 30 |
+
batting_team,
|
| 31 |
+
bowling_team,
|
| 32 |
+
total_runs,
|
| 33 |
+
total_wickets,
|
| 34 |
+
overs,
|
| 35 |
+
runs_last_5_overs,
|
| 36 |
+
wickets_last_5_overs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
prediction_array = []
|
| 40 |
+
# Batting Team
|
| 41 |
+
if batting_team == 'Afghanistan':
|
| 42 |
+
prediction_array = prediction_array + [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
| 43 |
+
elif batting_team == 'Australia':
|
| 44 |
+
prediction_array = prediction_array + [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
| 45 |
+
elif batting_team == 'Bangladesh':
|
| 46 |
+
prediction_array = prediction_array + [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
| 47 |
+
elif batting_team == 'England':
|
| 48 |
+
prediction_array = prediction_array + [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
|
| 49 |
+
elif batting_team == 'India':
|
| 50 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
|
| 51 |
+
elif batting_team == 'Ireland':
|
| 52 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
|
| 53 |
+
elif batting_team == 'New Zealand':
|
| 54 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
|
| 55 |
+
elif batting_team == 'Pakistan':
|
| 56 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
|
| 57 |
+
elif batting_team == 'South Africa':
|
| 58 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
|
| 59 |
+
elif batting_team == 'Sri Lanka':
|
| 60 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
|
| 61 |
+
elif batting_team == 'West Indies':
|
| 62 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
|
| 63 |
+
elif batting_team == 'Zimbabwe':
|
| 64 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
|
| 65 |
+
# Bowling Team
|
| 66 |
+
if bowling_team == 'Afghanistan':
|
| 67 |
+
prediction_array = prediction_array + [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
| 68 |
+
elif bowling_team == 'Australia':
|
| 69 |
+
prediction_array = prediction_array + [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
| 70 |
+
elif bowling_team == 'Bangladesh':
|
| 71 |
+
prediction_array = prediction_array + [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
| 72 |
+
elif bowling_team == 'England':
|
| 73 |
+
prediction_array = prediction_array + [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
|
| 74 |
+
elif bowling_team == 'India':
|
| 75 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
|
| 76 |
+
elif bowling_team == 'Ireland':
|
| 77 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
|
| 78 |
+
elif bowling_team == 'New Zealand':
|
| 79 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
|
| 80 |
+
elif bowling_team == 'Pakistan':
|
| 81 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
|
| 82 |
+
elif bowling_team == 'South Africa':
|
| 83 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
|
| 84 |
+
elif bowling_team == 'Sri Lanka':
|
| 85 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
|
| 86 |
+
elif bowling_team == 'West Indies':
|
| 87 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
|
| 88 |
+
elif bowling_team == 'Zimbabwe':
|
| 89 |
+
prediction_array = prediction_array + [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
|
| 90 |
|
| 91 |
+
prediction_array = prediction_array + [total_runs, total_wickets, overs, runs_last_5_overs, wickets_last_5_overs]
|
| 92 |
+
prediction_array = np.array([prediction_array])
|
| 93 |
+
prediction = model.predict(prediction_array)
|
| 94 |
|
| 95 |
+
label = f"Score Prediction: {(prediction[0])}"
|
|
|
|
|
|
|
|
|
|
| 96 |
return label
|
| 97 |
|
| 98 |
+
|
| 99 |
# Create the Gradio interface
|
| 100 |
+
title = "T20i Score Prediction"
|
| 101 |
+
description = "Predict the score of a T20i match."
|
| 102 |
output_label = [gr.Label(num_top_classes=4)]
|
| 103 |
gr.Interface(
|
| 104 |
fn=predict_accident,
|