Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from openai import AzureOpenAI
|
| 2 |
+
import os
|
| 3 |
+
import ffmpeg
|
| 4 |
+
from typing import List
|
| 5 |
+
from moviepy.editor import VideoFileClip
|
| 6 |
+
import nltk
|
| 7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 8 |
+
import gradio as gr
|
| 9 |
+
from pytube import YouTube
|
| 10 |
+
import requests
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
nltk.download('punkt')
|
| 14 |
+
nltk.download('stopwords')
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class VideoAnalytics:
|
| 18 |
+
"""
|
| 19 |
+
Class for performing analytics on videos including transcription, summarization, topic generation,
|
| 20 |
+
and extraction of important sentences.
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
def __init__(self):
|
| 24 |
+
"""
|
| 25 |
+
Initialize the VideoAnalytics object.
|
| 26 |
+
|
| 27 |
+
Args:
|
| 28 |
+
hf_token (str): Hugging Face API token.
|
| 29 |
+
"""
|
| 30 |
+
# Initialize AzureOpenAI client
|
| 31 |
+
self.client = AzureOpenAI()
|
| 32 |
+
|
| 33 |
+
# Initialize transcribed text variable
|
| 34 |
+
self.transcribed_text = ""
|
| 35 |
+
|
| 36 |
+
# API URL for accessing the Hugging Face model
|
| 37 |
+
self.API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3"
|
| 38 |
+
|
| 39 |
+
# Placeholder for Hugging Face API token
|
| 40 |
+
hf_token = os.get_environ("HF_TOKEN") # Replace this with the actual Hugging Face API token
|
| 41 |
+
|
| 42 |
+
# Set headers for API requests with Hugging Face token
|
| 43 |
+
self.headers = {"Authorization": f"Bearer {hf_token}"}
|
| 44 |
+
|
| 45 |
+
# Configure logging settings
|
| 46 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 47 |
+
|
| 48 |
+
def transcribe_video(self, vid: str) -> str:
|
| 49 |
+
"""
|
| 50 |
+
Transcribe the audio of the video.
|
| 51 |
+
|
| 52 |
+
Args:
|
| 53 |
+
vid (str): Path to the video file.
|
| 54 |
+
|
| 55 |
+
Returns:
|
| 56 |
+
str: Transcribed text.
|
| 57 |
+
"""
|
| 58 |
+
try:
|
| 59 |
+
# Load the video file and extract audio
|
| 60 |
+
video = VideoFileClip(vid)
|
| 61 |
+
audio = video.audio
|
| 62 |
+
|
| 63 |
+
# Write audio to a temporary file
|
| 64 |
+
audio.write_audiofile("output_audio.mp3")
|
| 65 |
+
audio_file = open("output_audio.mp3", "rb")
|
| 66 |
+
|
| 67 |
+
# Define a helper function to query the Hugging Face model
|
| 68 |
+
def query(data):
|
| 69 |
+
response = requests.post(self.API_URL, headers=self.headers, data=data)
|
| 70 |
+
return response.json()
|
| 71 |
+
|
| 72 |
+
# Send audio data to the Hugging Face model for transcription
|
| 73 |
+
output = query(audio_file)
|
| 74 |
+
# Update the transcribed_text attribute with the transcription result
|
| 75 |
+
self.transcribed_text = output["text"]
|
| 76 |
+
# Return the transcribed text
|
| 77 |
+
return output["text"]
|
| 78 |
+
|
| 79 |
+
except Exception as e:
|
| 80 |
+
logging.error(f"Error transcribing video: {e}")
|
| 81 |
+
return ""
|
| 82 |
+
|
| 83 |
+
def generate_video_summary(self) -> str:
|
| 84 |
+
"""
|
| 85 |
+
Generate a summary of the transcribed video.
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
str: Generated summary.
|
| 89 |
+
"""
|
| 90 |
+
try:
|
| 91 |
+
# Define a conversation between system and user
|
| 92 |
+
conversation = [
|
| 93 |
+
{"role": "system", "content": "You are a Summarizer"},
|
| 94 |
+
{"role": "user", "content": f"""summarize the following text delimited by triple backticks.
|
| 95 |
+
In two format of Outputs given below:
|
| 96 |
+
Abstractive Summary:
|
| 97 |
+
Extractive Summary:
|
| 98 |
+
```{self.transcribed_text}```
|
| 99 |
+
"""}
|
| 100 |
+
]
|
| 101 |
+
# Generate completion using ChatGPT model
|
| 102 |
+
response = self.client.chat.completions.create(
|
| 103 |
+
model="ChatGPT",
|
| 104 |
+
messages=conversation,
|
| 105 |
+
temperature=0,
|
| 106 |
+
max_tokens=1000
|
| 107 |
+
)
|
| 108 |
+
# Get the generated summary message
|
| 109 |
+
message = response.choices[0].message.content
|
| 110 |
+
return message
|
| 111 |
+
except Exception as e:
|
| 112 |
+
logging.error(f"Error generating video summary: {e}")
|
| 113 |
+
return ""
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def generate_topics(self) -> str:
|
| 117 |
+
"""
|
| 118 |
+
Generate topics from the transcribed video.
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
str: Generated topics.
|
| 122 |
+
"""
|
| 123 |
+
try:
|
| 124 |
+
# Define a conversation between system and user
|
| 125 |
+
conversation = [
|
| 126 |
+
{"role": "system", "content": "You are a Topic Generator"},
|
| 127 |
+
{"role": "user", "content": f"""generate single Topics from the following text don't make sentence for topic generation,delimited by triple backticks.
|
| 128 |
+
list out the topics:
|
| 129 |
+
Topics:
|
| 130 |
+
```{self.transcribed_text}```
|
| 131 |
+
"""}
|
| 132 |
+
]
|
| 133 |
+
# Generate completion using ChatGPT model
|
| 134 |
+
response = self.client.chat.completions.create(
|
| 135 |
+
model="ChatGPT",
|
| 136 |
+
messages=conversation,
|
| 137 |
+
temperature=0,
|
| 138 |
+
max_tokens=1000
|
| 139 |
+
)
|
| 140 |
+
# Get the generated topics message
|
| 141 |
+
message = response.choices[0].message.content
|
| 142 |
+
return message
|
| 143 |
+
except Exception as e:
|
| 144 |
+
logging.error(f"Error generating topics: {e}")
|
| 145 |
+
return ""
|
| 146 |
+
|
| 147 |
+
def extract_video_important_sentence(self) -> str:
|
| 148 |
+
"""
|
| 149 |
+
Extract important sentences from the transcribed video.
|
| 150 |
+
|
| 151 |
+
Returns:
|
| 152 |
+
str: Extracted important sentences.
|
| 153 |
+
"""
|
| 154 |
+
try:
|
| 155 |
+
# Tokenize the sentences
|
| 156 |
+
sentences = nltk.sent_tokenize(self.transcribed_text)
|
| 157 |
+
|
| 158 |
+
# Initialize TF-IDF vectorizer
|
| 159 |
+
tfidf_vectorizer = TfidfVectorizer()
|
| 160 |
+
|
| 161 |
+
# Fit the vectorizer on the summary sentences
|
| 162 |
+
tfidf_matrix = tfidf_vectorizer.fit_transform(sentences)
|
| 163 |
+
|
| 164 |
+
# Calculate sentence scores based on TF-IDF values
|
| 165 |
+
sentence_scores = tfidf_matrix.sum(axis=1)
|
| 166 |
+
|
| 167 |
+
# Create a list of (score, sentence) tuples
|
| 168 |
+
sentence_rankings = [(score, sentence) for score, sentence in zip(sentence_scores, sentences)]
|
| 169 |
+
|
| 170 |
+
# Sort sentences by score in descending order
|
| 171 |
+
sentence_rankings.sort(reverse=True)
|
| 172 |
+
|
| 173 |
+
# Set a threshold for selecting sentences
|
| 174 |
+
threshold = 2 # Adjust as needed
|
| 175 |
+
|
| 176 |
+
# Select sentences with scores above the threshold
|
| 177 |
+
selected_sentences = [sentence for score, sentence in sentence_rankings if score >= threshold]
|
| 178 |
+
|
| 179 |
+
# Join selected sentences to form the summary
|
| 180 |
+
summary = '\n\n'.join(selected_sentences)
|
| 181 |
+
|
| 182 |
+
return summary
|
| 183 |
+
|
| 184 |
+
except Exception as e:
|
| 185 |
+
logging.error(f"Error extracting important sentences: {e}")
|
| 186 |
+
return ""
|
| 187 |
+
|
| 188 |
+
def write_text_files(self, text: str, filename: str) -> None:
|
| 189 |
+
"""
|
| 190 |
+
Write text to a file.
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
text (str): Text to be written to the file.
|
| 194 |
+
filename (str): Name of the file.
|
| 195 |
+
"""
|
| 196 |
+
try:
|
| 197 |
+
file_path = f"{filename}.txt"
|
| 198 |
+
with open(file_path, 'w') as file:
|
| 199 |
+
# Write content to the file
|
| 200 |
+
file.write(text)
|
| 201 |
+
except Exception as e:
|
| 202 |
+
logging.error(f"Error writing text to file: {e}")
|
| 203 |
+
|
| 204 |
+
def Download(self, link: str) -> str:
|
| 205 |
+
"""
|
| 206 |
+
Download a video from YouTube.
|
| 207 |
+
|
| 208 |
+
Args:
|
| 209 |
+
link (str): YouTube video link.
|
| 210 |
+
|
| 211 |
+
Returns:
|
| 212 |
+
str: Path to the downloaded video file.
|
| 213 |
+
"""
|
| 214 |
+
try:
|
| 215 |
+
# Initialize YouTube object with the provided link
|
| 216 |
+
youtubeObject = YouTube(link)
|
| 217 |
+
|
| 218 |
+
# Get the highest resolution stream
|
| 219 |
+
youtubeObject = youtubeObject.streams.get_highest_resolution()
|
| 220 |
+
try:
|
| 221 |
+
# Attempt to download the video
|
| 222 |
+
file_name = youtubeObject.download()
|
| 223 |
+
return file_name
|
| 224 |
+
except:
|
| 225 |
+
# Log any errors that occur during video download
|
| 226 |
+
logging.info("An error has occurred")
|
| 227 |
+
|
| 228 |
+
logging.info("Download is completed successfully")
|
| 229 |
+
|
| 230 |
+
except Exception as e:
|
| 231 |
+
# Log any errors that occur during initialization of YouTube object
|
| 232 |
+
logging.error(f"Error downloading video: {e}")
|
| 233 |
+
return ""
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def main(self, video: str = None, input_path: str = None) -> tuple:
|
| 237 |
+
"""
|
| 238 |
+
Perform video analytics.
|
| 239 |
+
|
| 240 |
+
Args:
|
| 241 |
+
video (str): Path to the video file.
|
| 242 |
+
input_path (str): Input path for the video.
|
| 243 |
+
|
| 244 |
+
Returns:
|
| 245 |
+
tuple: Summary, important sentences, and topics.
|
| 246 |
+
"""
|
| 247 |
+
try:
|
| 248 |
+
# Download the video if input_path is provided, otherwise use the provided video path
|
| 249 |
+
if input_path:
|
| 250 |
+
input_path = self.Download(input_path)
|
| 251 |
+
text = self.transcribe_video(input_path)
|
| 252 |
+
elif video:
|
| 253 |
+
text = self.transcribe_video(video)
|
| 254 |
+
input_path = video
|
| 255 |
+
|
| 256 |
+
# Generate summary, important sentences, and topics
|
| 257 |
+
summary = self.generate_video_summary()
|
| 258 |
+
self.write_text_files(summary,"Summary")
|
| 259 |
+
important_sentences = self.extract_video_important_sentence()
|
| 260 |
+
self.write_text_files(important_sentences,"Important_Sentence")
|
| 261 |
+
topics = self.generate_topics()
|
| 262 |
+
self.write_text_files(topics,"Topics")
|
| 263 |
+
|
| 264 |
+
# Return the generated summary, important sentences, and topics
|
| 265 |
+
return summary,important_sentences,topics
|
| 266 |
+
|
| 267 |
+
except Exception as e:
|
| 268 |
+
# Log any errors that occur during video analytics
|
| 269 |
+
logging.error(f"Error in main function: {e}")
|
| 270 |
+
return "", "", ""
|
| 271 |
+
|
| 272 |
+
def gradio_interface(self):
|
| 273 |
+
with gr.Blocks(css="style.css",theme=gr.themes.Soft()) as demo:
|
| 274 |
+
gr.HTML("""<center><h1>Video Analytics</h1></center>""")
|
| 275 |
+
with gr.Row():
|
| 276 |
+
yt_link = gr.Textbox(label= "Youtube Link",placeholder="https://www.youtube.com/watch?v=")
|
| 277 |
+
with gr.Row():
|
| 278 |
+
video = gr.Video(sources="upload",height=200,width=300)
|
| 279 |
+
with gr.Row():
|
| 280 |
+
submit_btn = gr.Button(value="Submit")
|
| 281 |
+
with gr.Tab("Summary"):
|
| 282 |
+
with gr.Row():
|
| 283 |
+
summary = gr.Textbox(show_label=False,lines=10)
|
| 284 |
+
with gr.Row():
|
| 285 |
+
summary_download = gr.DownloadButton(label="Download",value="Summary.txt",visible=True,size='lg',elem_classes="download_button")
|
| 286 |
+
with gr.Tab("Important Sentences"):
|
| 287 |
+
with gr.Row():
|
| 288 |
+
Important_Sentences = gr.Textbox(show_label=False,lines=10)
|
| 289 |
+
with gr.Row():
|
| 290 |
+
sentence_download = gr.DownloadButton(label="Download",value="Important_Sentence.txt",visible=True,size='lg',elem_classes="download_button")
|
| 291 |
+
with gr.Tab("Topics"):
|
| 292 |
+
with gr.Row():
|
| 293 |
+
Topics = gr.Textbox(show_label=False,lines=10)
|
| 294 |
+
with gr.Row():
|
| 295 |
+
topics_download = gr.DownloadButton(label="Download",value="Topics.txt",visible=True,size='lg',elem_classes="download_button")
|
| 296 |
+
submit_btn.click(self.main,[video,yt_link],[summary,Important_Sentences,Topics])
|
| 297 |
+
demo.launch()
|